Renormalization of Circle Diffeomorphism Sequences and Markov Sequences

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 57)


We show a one-to-one correspondence between circle diffeomorphism sequences that are C 1+ n-periodic points of renormalization and smooth Markov sequences.


Marked Point Rotation Number Natural Projection Rigid Rotation Topological Conjugacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the financial support of LIAAD-INESC TEC through ‘Strategic Project - LA 14 - 2013–2014’ with reference PEst-C/EEI/LA0014/2013, USP-UP project, IJUP, Faculty of Sciences, University of Porto, Calouste Gulbenkian Foundation, FEDER, POCI 2010 and COMPETE Programmes and Fundação para a Ciência e a Tecnologia (FCT) through Project ‘Dynamics and Applications’, with reference PTDC/MAT/121107/2010. J. P. Almeida acknowledges the support from FCT, given through grant SFRH/PROTEC/49754/2009. Part of this research was done during visits by the authors to IMPA (Brazil), University of Säo Paulo (Brazil), University of Warwick (United Kingdom), Institut Henry Poincaré (France) and SUNY (USA). The authors thank them for their hospitality.


  1. 1.
    Almeida, J.P., Fisher, A.M., Pinto, A.A., Rand, D.A.: Anosov and circle diffeomorphisms. In: Peixoto, M., Pinto, A., Rand, D. (eds.) Dynamics Games and Science I. Springer Proceedings in Mathematics, pp. 11–23. Springer, Berlin (2011)CrossRefGoogle Scholar
  2. 2.
    Arnol’d, V.I.: Small denominators I: on the mapping of a circle into itself. Investijia Akad. Nauk. Math. (Transl. Am. Math.Soc. 2nd Ser. 46, 213–284) 25(1), 21–96 (1961)Google Scholar
  3. 3.
    Coullet, P., Tresser, C.: Itération d’endomorphismes et groupe de renormalisation. J. de Phys. Colloque 539, C5–25 (1978)Google Scholar
  4. 4.
    Herman, M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. IHES 49, 5–233 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Lanford, O.: Renormalization group methods for critical circle mappings with general rotation number. VIIIth International Congress on Mathematical Physics, pp. 532–536. World Science Publishing, Singapore (1987)Google Scholar
  6. 6.
    Masur, H.: Interval exchange transformations and measured foliations. Ann. Math. 2nd Ser. 115(1), 169–200 (1982)Google Scholar
  7. 7.
    Penner, R.C., Harer, J.L.: Combinatorics of Train-Tracks. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  8. 8.
    Pinto, A.A., Rand, D.A.: Characterising rigidity and flexibility of pseudo-Anosov and other transversally laminated dynamical systems on surfaces. Warwick Preprint (1995)Google Scholar
  9. 9.
    Pinto, A.A., Rand, D.A.: Existence, uniqueness and ratio decomposition for Gibbs states via duality. Ergod. Theory Dynam. Syst. 21, 533–543 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Pinto, A.A., Rand, D.A.: Smoothness of holonomies for codimension 1 hyperbolic dynamics. Bull. London Math. Soc. 34, 341–352 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Pinto, A.A., Rand, D.A.: Teichmüller spaces and HR structures for hyperbolic surface dynamics. Ergod. Theory Dynam. Syst. 22, 1905–1931 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Pinto, A.A., Rand, D.A.: Rigidity of hyperbolic sets on surfaces. J. London Math. Soc. 71(2), 481–502 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pinto, A.A., Rand, D.A.: Solenoid functions for hyperbolic sets on surfaces. In: Boris Hasselblat (ed.) Dynamics, Ergodic Theory and Geometry. Mathematical Sciences Research Institute Publications, vol. 54, pp. 145–178. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  14. 14.
    Pinto, A.A., Rand, D.A.: Train-tracks with C 1+ self-renormalisable structures. J. Differ. Equat. Appl. 16(8), 945–962 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pinto, A.A., Sullivan, D.: The circle and the solenoid. Dedicated to Anatole Katok on the Occasion of his 60th Birthday. Discrete Contin. Dynam. Syst. A 16(2), 463–504 (2006)Google Scholar
  16. 16.
    Pinto, A.A., Rand, D.A., Ferreira, F.: Cantor exchange systems and renormalization. J. Differ. Equat. 243, 593–616 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Pinto, A.A., Rand, D.A., Ferreira, F.: Arc exchange systems and renormalization. J. Differ. Equat. Appl. 16(4), 347–371 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Pinto, A.A., Rand, D.A., Ferreira, F.: Fine Structures of Hyperbolic Diffeomorphisms. Springer Monographs in Mathematics. Springer, New York (2010)Google Scholar
  19. 19.
    Pinto, A.A., Almeida, J.P., Rand, D.A.: Anosov and renormalized circle diffeomorphisms, pp. 1–33 (2012, submitted).Google Scholar
  20. 20.
    Pinto, A.A., Almeida, J.P., Portela, A.: Golden tilings. Trans. Am. Math. Soc. 364, 2261–2280 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Rand, D.A.: Existence, nonexistence and universal breakdown of dissipative golden invariant tori. I. Golden critical circle maps. Nonlinearity 5(3), 639–662 (1992)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Veech, W.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. 2nd Ser. 115(2), 201–242 (1982)Google Scholar
  23. 23.
    Yoccoz, J.C.: Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne. Ann. Scient. Éc. Norm. Sup. 4 série t 17, 333–359 (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.LIAAD-INESC TEC and Department of MathematicsSchool of Technology and Management, Polytechnic Institute of BragançaBragançaPortugal
  2. 2.LIAAD-INESC TEC and Department of MathematicsUniversity of PortoPortoPortugal
  3. 3.Warwick Systems Biology and Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations