Advertisement

Mathematics Education in Oriental Antiquity and Middle Ages

Chapter

Abstract

Mathematics Education in East and Southeast Asia

Alexei Volkov

This section focuses on the history of mathematics education in China, Taiwan, Korea, and Vietnam, as well as in the political entities located entirely or partly within the modern boundaries of these countries. The time scope ranges from the first millennium BCE to the mid-second millennium CE, and the topics discussed include the curricula of governmental educational institutions, teaching methodology, mathematics textbooks, and state examinations.

Mathematics Education in India

Agathe Keller

Very little is known of the context in which much of ancient India’s scholarly knowledge burgeoned. Part of this ignorance springs precisely from the fact that very little is known about elementary, higher, or specialized education in ancient and medieval India. For ancient and medieval mathematics in the Indian subcontinent, most of the studied textual sources are in Sanskrit, a Brahmanical language that became the scholarly language of an educated cosmopolitan elite. Three historical periods relevant to the history of mathematics in India are studied – Vedic period (ca. 2500 BCE–500 BCE), Classical and Medieval period (−500 BCE–twelfth century), and Premodern period (thirteenth–eighteenth centuries) – in which oral transmissions and written practice, as well as texts of elementary, vocational, or specialized mathematics, are examined for what they reveal about an educational setting.

Keywords

Mathematical Treatise Song Dynasty Tang Dynasty Twelfth Century Mathematical Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Primary Sources (for Section 1)

  1. Cheng Dawei 程大位. 1990. Suan fa tong zong jiaoshi 算法統宗校釋 (An annotated edition of the Summarized fundamentals of computational methods). Hefei: Anhui jiaoyu Publishers.Google Scholar
  2. CM 1969 – Tr`ân VănVi 陳文為 et al. (eds.). Khâm Định Việt Sử Thông Giám Cương Mục 欽定越史通鑑綱目 (Imperially commissioned itemized summaries of the comprehensive mirror of Việt history). Taipei: Guoli zhongyang tushuguan.Google Scholar
  3. Guo 1993 – Guo Shuchun 郭書春 (ed.), Shu xue juan 數學卷 (Mathematical section). In Zhongguo kexue jishu dianji tonghui 中國科學技術典籍通彙 (Comprehensive collection of primary materials on science and technology in China), ed. Ren Jiyu 任繼愈. Zhengzhou: Henan Education Publishers.Google Scholar
  4. JTS 1975 – Liu Xu 劉昫 (ed). Jiu Tang shu 舊唐書 (Old history of the Tang [Dynasty]). Beijing: Zhonghua shuju.Google Scholar
  5. NHS 1985 – Nihon shoki 日本書紀 (Chronicles of Japan). Tokyo: Yoshikava Kōbunkan.Google Scholar
  6. RGG 1985 – Kiyohara Natsuno 清原夏野 et al., Ryō no gige 令集解 (Explanations of the codes [of the eras Taihō and Yōrō]). Tokyo: Yoshikava Kōbunkan.Google Scholar
  7. SS 2008 Hubei sheng wenwu kaogu yanjiusuo 湖北省文物考古研究所 and Yunmeng xian bowuguan 云梦县博物馆, Hubei Yunmeng Shuihudi M77 fajue jianbao 湖北云梦睡虎地M77发掘简报 (Short report on the excavations of the tomb M77 at Shuihudi in Yunmeng, Hubei province), Jiang Han kaogu 江汉考古, 109: 31–37, plates 11–16.Google Scholar
  8. SSS 2000 – Jiangling Zhangjiashan Hanjian zhengli xiao zu 江陵張家山漢簡整理小組 (Restoration team for the Han [dynasty] bamboo strips [found at] Zhangjiashan in Jiangling). “Jiangling Zhangjiashan Hanjian ‘Suan shu shu’ shiwen”《江陵張家山漢簡〈算數書〉釋文》(Transcription of the Suan shu shu of the Han [dynasty written on] bamboo strips [found at] Zhangjiashan in Jiangling). Wenwu 文物, no. 9: 78–84.Google Scholar
  9. SSS 2001 – Zhangjiashan Han mu zhujian (erbai sishi qi hao mu) 張家山漢墓竹簡〔二四七號墓〕 (Bamboo strips from the Han [dynasty] tomb number 247 in Zhangjiashan). Beijing: Wenwu Chubanshe.Google Scholar
  10. SSS 2006 – Ohkawa [= Ōgava] Toshitaka 大川俊隆 et al. Kan kan “San sū sho”. Shashinban 漢簡『算数書』. 写真版 (Photographic reproduction of the bamboo strips of the Suan shu shu on the Han [dynasty]). Kyoto: Hōyu shoten 朋友書店 [appendix to Ohkawa et al. 2006].Google Scholar
  11. TLD 1983 – Zhang Jiuling 張九齡 et al., Tang liu dian 唐六典 (Six codes of the Tang [Dynasty]). In Siku quanshu, Wenyuange edition 文淵閣四庫全書, vol. 595. Taibei: Taiwan Shangwu Publishers.Google Scholar
  12. XTS 1956 – Ouyang Xiu 歐陽脩 and Song Qi 宋祁. Xin Tang shu 新唐書 (New history of the Tang [Dynasty]). Taibei: Editorial Board for Publication of 25 Dynastic Histories.Google Scholar
  13. Yang 2003 – Yang Xuewei 杨学为 (ed.). Zhongguo kaoshi shi wenxian jicheng 中国考试史文献集成 (Collected materials on the history of examinations in China). Beijing: Gaodeng jiaoyu Publishers.Google Scholar

Secondary Sources (for Section 1)

  1. Publications in Asian LanguagesGoogle Scholar
  2. Cheng Fangping 程方平. 1993. Liao, Jin, Yuan jiaoyu shi 辽金元教育史 (History of education of the Liao, Jin, and Yuan [dynasties]). Chongqing: Chongqing Publishers.Google Scholar
  3. Feng Lisheng 冯立升, Li Di 李迪. 2000. Liu zhang, San kai xin tan《六章》、《三開》新探 (New exploration of the [Korean mathematical treatises] Liu zhang and San kai). Xibei daxue xuebao 西北大学学報, 30(1): 89–92.Google Scholar
  4. Fujiwara Matsusaburō 藤原松三郎. 1940. Shina sūgakushi no kenkyū III 支那數學の研究 III (Studies in the history of Chinese mathematics, part III). Tohoku sugaku zasshi 東北數學雜誌 (The Tohoku Mathematical Journal), 47: 309–321.Google Scholar
  5. Guo Shirong 郭世荣. 1991. Lun Zhongguo gudai de guojia tiansuan jiaoyu 论中国古代的国家天算教育 (On the state astronomical and mathematical education in ancient China). In Shuxue shi yanjiu wenji 数学史研究文集 (Collected works on the history of Chinese mathematics), ed. Li Di 李迪, issue 2: 27–30. Huhehaote: Nei Menggu daxue and Taipei: Jiuzhang Publishers.Google Scholar
  6. Guo Shuchun 郭书春. 1989. A preliminary inquiry into Li Ji’s Jiuzhang Suanshu Yinyi (李籍《九章算术音义》初探), Ziran kexue shi yanjiu自然科学史研究 (Studies in history of natural sciences), 8(3): 197–204.Google Scholar
  7. Horng Wann-Sheng 洪萬生, Lin Cang-Yi 林倉億, Su Hui-Yu 蘇惠玉, Su Jun-Hong 蘇俊鴻. 2006. Shu zhi qiyuan: Zhongguo shuxue shi kaizhang ‘Suan shu shu’ 數之起源中國數學史開章 “筭數書” (The origin of the numbers: Suan shu shu, the opening chapter of the history of mathematics in China). Taibei: Taibei shangwu yinshuguan.Google Scholar
  8. Jochi Shigeru 城地茂 (tr.). 2001. San sū sho Nihongo yaku 算數書日本語譯 (Japanese translation of the Suan shu shu). In Wasan kenkyuso kiyo 和算研究所紀要, 4: 19–46.Google Scholar
  9. Kim Yong-Woon 金容雲, Kim Yong-Guk 金容局. 1978. Kankoku sūgaku shi 韓國數學史 (A history of Korean mathematics). Tokyo: Maki shoten.Google Scholar
  10. Liu Caonan 劉操南. 1944. Zhou li ‘jiu shu’ jie 周禮九數解 (Explanation of [the term] ‘jiu shu’ in the Zhou li). Yishi bao (wenshi fukan) 益世報 (文史副刊), no. 19. [Not seen; quoted from Ou et al. 1994, pp. 234, 240, no. 12].Google Scholar
  11. Li Yan 李儼. 1933 [1977]. Tang Song Yuan Ming shuxue jiaoyu zhidu 唐宋元明數學教育制度 (The system of mathematics education [in China] of the Tang, Song, Yuan, and Ming [dynasties]). Originally published in Kexue zazhi 科學雜誌 (Science Magazine), vol. 17 (1933), no. 10, pp. 1545–1565; reproduced in Li Yan 李儼, Zhong suan shi luncong 中算史論叢 (Collected works on the history of Chinese mathematics). Beijing: Zhongguo Kexueyuan, 1954–1955, vol. 4, pp. 238–280, and in Li Ziyan 李子嚴 (= Li Yan 李儼), Zhong suan shi luncong 中算史論叢, Taibei: Taiwan shangwu, 1977, vol. 4, pt. 1, pp. 253–285.59 Google Scholar
  12. Li Yan 李儼. 1937. Zhongguo suanxue shi 中國算學史 (History of Chinese mathematics). Shanghai: Shangwu yinshuguan.Google Scholar
  13. Li Yan 李儼. 1955. Zhongguo gudai shuxue shiliao 中國古代數學史料 (Materials [for study] of ancient Chinese mathematics). 2nd ed. Shanghai: Xinhua shudianGoogle Scholar
  14. Ohkawa [= Ōgava] Toshitaka 大川俊隆 et al. 2006. [Chō ka san Kan kan “San sū sho” kenkyukai 張家山漢簡『算数書』研究会 (Society for study of the Suan shu shu of the Han [dynasty written on bamboo] strips from Zhanjiashan).] Kan kan “San sū sho”: Chūgoku saiko-no sūgakusho 漢簡『算数書』: 中国最古の数学書 (The Suan shu shu of the Han [dynasty written on bamboo] strips from Zhanjiashan: the most ancient Chinese mathematical book). Kyoto: Hōyu shoten 朋友書店.Google Scholar
  15. Ou Yan 瓯燕, Wen Benheng 文本亨, and Yang Yaolin 杨耀林. 1994. Cong Shenzhen chutu chengfa koujue lun woguo gudai ‘jiu jiu zhi shu’ 从深圳出土乘法口诀论我国古代九九之术 (Discussing the ancient Chinese “method of nine nines” on the basis of the mnemonic multiplication rule [written on a brick] excavated in Shenzhen). In Shenzhen kaogu faxian yu yanjiu 深圳考古发现与研究 (Shenzhen: Archeological discoveries and research), ed. Wu Zengde 吴曾德, 232–241. Beijing: Wenwu Publishers. (Originally published in Wenwu, 1991, no. 9: 78–85).Google Scholar
  16. Sun Hongan 孙宏安. 1996. Zhongguo gudai kexue jiaoyu shilüe 中国古代科学教育略 (Brief history of science education in ancient China). Shenyang: Liaoning jiaoyu Publishers.Google Scholar
  17. Sun Peiqing 孙培青 (ed.). 2000. Zhongguo jiaoyu shi 中国教育史 (History of education in China). Shanghai: Huadong Shifan Daxue Publishers.Google Scholar
  18. Tong Jianhua 佟健华, Yang Chunhong 杨春宏, Cui Jianqin 崔建勤 (eds.). 2007. Zhongguo gudai shuxue jiaoyu shi 中国古代数学教育史 (History of mathematics education in ancient China). Beijing: Kexue Publishers.Google Scholar
  19. Wang Yusheng 王渝生. 1993. Dunhuang suanshu tiyao 敦煌算書提要 (Summary of mathematical books from Dunhuang). In Guo 1993, vol. 1, 401–405.Google Scholar
  20. Yan Dunjie 严敦杰. 2000. Zu Chongzhi kexue zhuzuo jiaoshi 祖沖之科学著作校释/Annotated collation of Zu Chongzhi’s scientific works. Shenyang: Liaoning jiaoyu.Google Scholar
  21. Zhou Dongming 周东明. 1990. ‘Xi suan gang mu’ yu Yang Hui de shuxue jiaoyu sixiang《习算纲目》与杨辉的数学教育思想 (The ‘Syllabus for studying mathematics’ and Yang Hui’s philosophy of mathematics education). 华中师范大学学报 (自然科学版). Journal of Central Normal University, Natural Sciences series, 24(3): 396–399.Google Scholar
  22. Zou Dahai 鄒大海. 2008. Chutu jiandu yu Zhongguo zaoqi shuxueshi 出土簡牘與中國早期數學史 (Unearthed texts on bamboo strips and history of ancient Chinese mathematics). Renwen yu shehui xuebao 人文與社會學報 2(2): 71–98.Google Scholar
  23. Zou Dahai 邹大海. 2011. Guanyu Qin jian shuxue zhuzuo Shu de guoji huiyi zai Yuelu shuyuan juxing – ‘Yuelu shuyuan cang Qin jian (di er juan) guoji yanjiuhui’ jianjie 关于秦简数学著作《数》的国际会议在岳麓书院举行 –《岳麓书院藏秦简》(第二卷) 国际研读会简介 (On the international conference in Yuelu Academy devoted to the mathematical work Shu on [bamboo] strips [dated of] the Qin [dyansty] – a brief introduction of the Second Volume of Proceedings of the International Workshop on Qin dynasty bamboo strips held in Yuelu Academy). Ziran kexue shi yanjiu 自然科学史研究 (Studies in History of Natural Sciences), no. 1: 131–132.Google Scholar
  24. Publications in Western LanguagesGoogle Scholar
  25. Berezkina, El’vira I. 1975. Van Syao-Tun. Matematicheskii traktat o prodolzhenii drevnikh (metodov) (Wang Xiaotong. Mathematical treatise on the continuation of ancient (methods), [an annotated Russian translation]). In Istoriko-matematicheskie issledovaniya (Studies in the history of mathematics) 20: 329–371.Google Scholar
  26. Boltz, William G. 1993. Chou li [= Zhou li] 周禮. In Early Chinese texts. A bibliographical guide, ed. M. Loewe. Berkeley: The Society for the Study of Early China/The Institute of East Asian Studies, University of California (Berkeley): 24–32.Google Scholar
  27. Chemla, Karine, and Guo Shuchun. 2004. 九章算術. Les Neuf Chapitres: le classique mathématique de la Chine ancienne et ses commentaires. Paris: Dunod.Google Scholar
  28. Chemla, Karine, Ma Biao 馬彪. 2011. Interpreting a newly discovered mathematical document written at the beginning of the Han dynasty in China (before 157 B.C.E.) and excavated from tomb M77 at Shuihudi (睡虎地). Sciamvs 12: 159–191.Google Scholar
  29. Cullen, Christopher. 1993. Chiu chang suan shu [= Jiu zhang suan shu]. 九章算術. In Early Chinese texts. A bibliographical guide, ed. M. Loewe, 16–23. Berkeley: The Society for the Study of Early China/The Institute of East Asian Studies, University of California (Berkeley).Google Scholar
  30. Cullen, Christopher. 2004. The Suan shu shu ‘Writing on reckoning’: A translation of a Chinese mathematical collection of the second century BC, with explanatory commentary. Needham Research Institute working papers 1. Cambridge: Needham Research Institute.Google Scholar
  31. Cullen, Christopher. 2007. The Suàn shù shū 算數書, ‘Writings on reckoning’: Rewriting the history of early Chinese mathematics in the light of an excavated manuscript. Historia Mathematica 34(1): 10–44.Google Scholar
  32. Dauben, Joseph W. 2008. 算數書 Suan Shu Shu: A book on numbers and computations. Archive for History of Exact Sciences 62: 91–178.CrossRefMATHMathSciNetGoogle Scholar
  33. Des Rotours, Robert. 1932. Le traité des examens, traduit de la Nouvelle histoire des T’ang (chap. 44–45). Paris: Librairie Ernest Leroux.Google Scholar
  34. Friedsam, Manfred. 2003. L’enseignement des mathématiques sous les Song et Yuan. In Éducation et instruction en Chine, vol. 2 (Les formations spécialisées), ed. C. Despeux and C. Nguyen Tri, 49–68. Paris – Louvain: Editions Peeters.Google Scholar
  35. Ho Peng Yoke. 2003. Chinese mathematical astrology: Reaching out to the stars. London/New York: Routledge Curzon.Google Scholar
  36. Hucker, Charles O. 1988. A dictionary of official titles in Imperial China. Taibei: Southern Materials Center (originally printed by Stanford University Press, 1985).Google Scholar
  37. Jun Yong Hoon. 2006. Mathematics in context: A case in early nineteenth-century Korea. Science in Context 19(4): 475–512.CrossRefMATHMathSciNetGoogle Scholar
  38. Lam Lay Yong. 1977. A critical study of the Yang Hui suan fa. Singapore: NUS Press.Google Scholar
  39. Lee, Thomas H.C. 1985. Government education and examinations in Sung China. Hong Kong/New York: The Chinese University Press/St. Martin’s Press.Google Scholar
  40. Lee, Thomas H.C. 2000. Education in traditional China: A history. Brill: Leiden.Google Scholar
  41. Li Wenlin, Xu Zelin, and Feng Lisheng. 1999. Mathematical exchanges between China and Korea. Historia Scientiarum 67: 73–83.Google Scholar
  42. Libbrecht, Ulrich. 1982. Mathematical manuscripts from the Tunhuang [= Dunhuang] caves. In Explorations in the history of science and technology in China, ed. Li Guohao et al., 203–229. Shanghai: Chinese Classics Publishing House.Google Scholar
  43. Martzloff, Jean-Claude. 1997. A history of Chinese mathematics. Berlin: Springer.CrossRefMATHGoogle Scholar
  44. Riegel, Jeffrey K. 1993. Li chi [= Li ji] 禮記. In Early Chinese texts. A bibliographical guide, ed. M. Loewe, 293–297. Berkeley: The Society for the Study of Early China/The Institute of East Asian Studies, University of California (Berkeley).Google Scholar
  45. Siu Man Keung. 1993. Proof and pedagogy in ancient China: Examples from Liu Hui’s commentary on Jiu Zhang Suan Shu. Educational Studies in Mathematics 24: 345–357.CrossRefGoogle Scholar
  46. Siu Man Keung. 1995. Mathematics education in ancient China: What lesson do we learn from it? Historia Scientiarum 4(3): 223–232.MATHMathSciNetGoogle Scholar
  47. Siu Man Keung. 1999. How did candidates pass the state examinations in mathematics in the Tang dynasty (618–917)? – Myth of the ‘Confucian-Heritage-Culture’ classroom. Actes du Colloque “Histoire et épistemologie dans l’éducation mathématique”, 321–334. Louvain: Université catholique de Louvain.Google Scholar
  48. Siu Man Keung. 2004. Official curriculum in mathematics in ancient China: How did candidates study for the examination? In How Chinese learn mathematics: Perspective from insiders, ed. Fan Lianghuo, Wong Ngai-Ying, Cai Jinfa, and Li Shiqi, 157–185. Singapore/River Edge: World Scientific.Google Scholar
  49. Siu Man Keung. 2009. Mathematics education in East Asia from antiquity to modern times. In Dig where you stand: Proceedings of a conference on on-going research in the history of mathematics education, ed. Kristin Bjarnadottir, Fulvia Furinghetti, and Gert Schubring, 197–208. Gardabaer, 20–24 June 2009.Google Scholar
  50. Siu Man Keung, and Alexei Volkov. 1999. Official curriculum in traditional Chinese mathematics: How did candidates pass the examinations? Historia Scientiarum 9(1): 85–99.MATHMathSciNetGoogle Scholar
  51. Sivin, Nathan. 2009. Granting the seasons. New York: Springer Science + Business Media LLC.MATHGoogle Scholar
  52. Volkov, Alexei. 1994. Large numbers and counting rods. In Sous les nombres, le monde, Extrême-Orient Extrême-Occident, vol. 16, ed. A. Volkov, 71–92. Paris: PUV.Google Scholar
  53. Volkov, Alexei. 2007. Geometrical diagrams in Liu Hui’s commentary on the Jiuzhang suanshu. In Graphics and text in the production of technical knowledge in China, ed. F. Bray, V. Dorofeeva-Lichtmann, and G. Métailié, 425–459. Leiden: Brill.CrossRefGoogle Scholar
  54. Volkov, Alexei. 2010. Commentaries upon commentaries: The translation of the Jiu zhang suan shu 九章算術 by Karine Chemla and Guo Shuchun (essay review). Historia Mathematica 37: 281–301.Google Scholar
  55. Volkov, Alexei. 2012a. Argumentation for state examinations: Demonstration in traditional Chinese and Vietnamese mathematics. In The history of mathematical proof in ancient traditions, ed. Karine Chemla, 509–551. Cambridge: Cambridge University Press.Google Scholar
  56. Volkov, Alexei. 2012b. Recent publications on the early history of Chinese mathematics (essay review). Educação Matemática Pesquisa 14(3): 348–362.Google Scholar
  57. Volkov, Alexei. 2013. Didactical dimensions of mathematical problems: ‘weighted distribution’ in a Vietnamese mathematical treatise. In Scientific sources and teaching contexts: Problems and perspectives, ed. C. Proust and A. Bernard. Boston Studies in Philosophy of Science. New York: Springer (forthcoming).Google Scholar
  58. Wong, Joseph. 1979. The government schools in T’ang China and Nara and Heian Japan: A comparative study. (An unpublished thesis submitted for the degree of Master of Arts). Canberra: Australian National University.Google Scholar

References (for Section 2)

  1. Chattopadhyaya, Debiprasad (ed.). 1986. History of science and technology in ancient India, the beginnings. New-Dehli: Firma Klm.Google Scholar
  2. Colebrooke, Henry T. 1817. Algebra, with arithmetic and mensuration. London: J. Murray.Google Scholar
  3. Hayashi, Takao. 2001. Mathematics (gaṇita). In Storia della Scienza, vol. II.II.X.1–7, 772–790. Rome: Istituto della Enciclopedia Italiana.Google Scholar
  4. Keller, Agathe. 2006. Expounding the mathematical seed, Bshāskara and the mathematical chapter of the Āryabhaṭīya. Basel: Birkhauser.Google Scholar
  5. Keller, Agathe. 2007. Qu’est ce que les mathématiques? Les réponses taxinomiques de Bhāskara un commentateur, mathématicien et astronome du VIIème siècle, Sciences et Frontières: 29–61. Bruxelles: Kimé.Google Scholar
  6. Plofker, Kim. 2007. Mathematics in India. In Mathematics in Egypt, Mesopotamia, China, India and Islam, ed. Victor Katz, 385–514. Princeton: Princeton University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CNRS & Université Denis-Diderot, Laboratoire SPHEREParisFrance
  2. 2.Center for General Education and Institute of HistoryNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations