Biosonar pp 231-256

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 51) | Cite as

Analysis of Natural Scenes by Echolocation in Bats and Dolphins

Chapter

Abstract

Echolocation research has carefully detailed the acoustic cues used by bats and dolphins to localize and discriminate sonar targets; however, there remains an incomplete understanding of the larger problem of auditory scene analysis, namely how echo features from the natural environment are perceptually organized in the animal’s sonar receiver. This chapter reviews research that contributes to our understanding of auditory scene analysis by echolocating bats and dolphins. A review of psychophysical studies of sonar perception brings to light the limitations of understanding auditory scene analysis by echolocation when animals are constrained to a limited repertoire of emitted signals, and listening to a mix of simulated and real echoes that can compromise the perceptual salience of the experimental setting. Adaptive sonar behaviors are an integral component of echolocation systems that would be expected to feed into auditory scene analysis processes, and studies of the echolocating animal’s control over the signals it uses to probe the environment can shed light on sonar scene perception. However, adaptive sonar studies do not provide a direct measure of the animal’s perception of a complex, natural environment. Instead, auditory perception can be inferred only from the animal’s adaptive motor behaviors. Future research on auditory scene analysis by echolocation must embrace the challenge of marrying the advantages of psychophysical and adaptive motor studies, taking creative new approaches to tap into an animal’s perception of its complex, 3D auditory world, while allowing it to engage in its natural behaviors.

Keywords

Biosonar Auditory perception Spatial hearing Complex environment Psychoacoustics Adaptive motor behaviors Sonar beam aim Temporal patterning Head and ear movements Acoustic glints Integration window Active sensing Obstacle avoidance Prey capture Figure-ground segregation 

References

  1. Altes, R. A., Dankiewica, L. A., Moore, P. W., & Helweg, D.A. (2003). Multiecho processing by an echolocating dolphin. Journal of the Acoustical Society of America, 114, 1155–1166.CrossRefGoogle Scholar
  2. Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.CrossRefGoogle Scholar
  3. Au, W. W. L. (1994). Comparison of sonar discrimination-dolphin and an artificial neural-network. Journal of the Acoustical Society of America, 95, 2728–2735.PubMedCrossRefGoogle Scholar
  4. Au, W. W. L., & Turl C.W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 73, 1676–1681.PubMedCrossRefGoogle Scholar
  5. Au, W. W. L., & Moore, P. W. (1984). Receiving beam patterns and directivity indexes of the Atlantic bottlenose dolphin Tursiops truncates. Journal of the Acoustical Society of America, 75, 255–262.PubMedCrossRefGoogle Scholar
  6. Au, W. W. L., & Pawloski, D. A. (1989). A comparison of signal-detection between an echolocating dolphin and an optimal receiver. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 164, 451–458.CrossRefGoogle Scholar
  7. Au, W. W. L., & Pawloski, D. A. (1992). Cylinder wall thickness difference discrimination by an echolocating Altantic bottle-nosed-dolphin. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 170, 41–47.CrossRefGoogle Scholar
  8. Au, W. W. L., & Banks, K. (1998). The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. Journal of the Acoustical Society of America, 103, 41–47.CrossRefGoogle Scholar
  9. Au, W. W. L., Andersen, L. N., Rasmussen, A. R., Roitblat, H. L., & Nachtigall, P. E. (1995). Neural-network modeling of a dolphin’s sonar discrimination capabilities. Journal of the Acoustical Society of America, 98, 43–50.PubMedCrossRefGoogle Scholar
  10. Au, W. W. L., Benoit-Bird, K. J., & Kastelein, R. A. (2007). Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises. Journal of the Acoustical Society of America, 121, 3954–3962.PubMedCrossRefGoogle Scholar
  11. Barber, J. R., Razak, K. A., & Fuzessery, Z. M. (2003). Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 189, 843–855.CrossRefGoogle Scholar
  12. Bates, M. E., Stamper, S. A., & Simmons, J. A. (2008). Jamming avoidance response of big brown bats in target detection. Journal of Experimental Biology, 211, 106–113.PubMedCrossRefGoogle Scholar
  13. Bates, M. E., Simmons, J. A., & Zorikov, T. V. (2011). Bats use echo harmonic structure to distinguish their targets from background clutter. Science, 333, 627–630.PubMedCrossRefGoogle Scholar
  14. Bee, M. A., & Micheyl, C. (2008). The cocktail party problem: What is it? How can it be solved? And why should animal behaviorists study it? Journal of Comparative Psychology, 122, 235–251.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Benoit-Bird, K. J., & Au, W. W. L. (2009). Phonation behavior of cooperatively foraging spinner dolphins. Journal of the Acoustical Society of America, 125, 539.PubMedCrossRefGoogle Scholar
  16. Branstetter, B. K., Mercado, E., & Au, W. W. L. (2007). Representing multiple discrimination cues in a computational model of the bottlenose dolphin auditory system. Journal of the Acoustical Society of America, 122, 2459–2468.PubMedCrossRefGoogle Scholar
  17. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: Bradford Books, MIT Press.Google Scholar
  18. Chiu, C., Xian, W., & Moss, C.F. (2008). Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming. Proceedings of the National Academy of Sciences of the USA, 105, 13115–13120.Google Scholar
  19. Chiu C., Xian, W., & Moss, C. F. (2009). Adaptive echolocation behavior in bats for the analysis of auditory scenes. Journal of Experimental Biology, 212, 1392–1404.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Falk, B., Williams, T., Aytekin, M., & Moss, C. F. (2011). Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, doi: 10.1007/s00359-010-0621-6.Google Scholar
  21. Finneran, J. J. (2013) Dolphin “packet” use during long-range echolocation tasks. Journal of the Acoustical Society of America, 113,1796. CrossRefGoogle Scholar
  22. Finneran, J. J., Houser, D. S., Moore, P. W., Branstetter, B. K., Trickey, J. S., & Ridgway, S. H. (2010). A method to enable a bottlenose dolphin (Tursiops truncatus) to echolocate while out of water. Journal of the Acoustical Society of America, 128, 1483.PubMedCrossRefGoogle Scholar
  23. Ghose, K., & Moss, C. F. (2003). The sonar beam pattern of a flying bat as it tracks tethered insects. Journal of the Acoustical Society of America, 114, 1120–1131.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gillam, E. H., Ulanovsky, N., & McCracken, G. F. (2007). Rapid jamming avoidance in biosonar. Proceedings of the Royal Society of London B: Biological Sciences, 274, 651–660.Google Scholar
  25. Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press. 2nd ed. (1986). Ithaca, NY: Cornell University Press.Google Scholar
  26. Griffin, D., Webster, F. A., & Michael, C. R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 8, 141–154.CrossRefGoogle Scholar
  27. Habersetzer, J., & Vogler, B. (1983). Discrimination of surface-structured targets by the echolocating bat Myotis myotis during flight. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 152(2), 275–282.CrossRefGoogle Scholar
  28. Harley, H. E., Putman, E. A., & Roitblat, H. L. (2003). Bottlenose dolphins perceive object features through echolocation. Nature, 424 (6949), 667–669.PubMedCrossRefGoogle Scholar
  29. Hartley, D. J., & Suthers, R. A. (1989). The sound emission pattern of the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 85, 1348–1351.CrossRefGoogle Scholar
  30. Helweg, D. A., Moore, P. W., Dankiewica, L. A., Zafran, J. M., & Brill, R. L. (2003). Discrimination of complex synthetic echoes by an echolocating bottlenose dolphin. Journal of the Acoustical Society of America, 113(2), 1138–1144.PubMedCrossRefGoogle Scholar
  31. Houser, D., Martin, S. W., Bauer, E. J., Phillips, M., Herrin, T., Cross, M., Vidal, A., & Moore, P.W. (2005). Echolocation characteristics of free-swimming bottlenose dolphins during object detection and identification. Journal of the Acoustical Society of America, 117, 2308.PubMedCrossRefGoogle Scholar
  32. Johnson, R. A., Moore, P. W. B., Stoermer, M. W., Pawloski, J. L., & Anderson, L. C. (1989). Temporal order discrimination within the dolphin critical interval. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: Processes and performance. New York: Plenum Press.Google Scholar
  33. Kalko, E. K. V., Schnitzler, H. U., Kaipf, I., & Grinnell, A. D. (1998). Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris: Preadaptations for piscivory? Behavioral Ecology and Sociobiology, 42(5), 305–319.CrossRefGoogle Scholar
  34. Kloepper, L., Nachtigall, P. E., & Breese, M. (2010). Change in echolocation signals with hearing loss in a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 128, 2233–2237.PubMedCrossRefGoogle Scholar
  35. Lammers, M. O., Au, W. W. L., & Herzing, D. L. (2003). The broadband social acoustic signaling behavior of spinner and spotted dolphins. Journal of the Acoustical Society of America, 114, 1629–1639.PubMedCrossRefGoogle Scholar
  36. Long, G. R., & Schnitzler, H. U. (1975). Behavioral audiograms from bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 100(3), 211–219.CrossRefGoogle Scholar
  37. Martin, S. W., Phillips, M., Bauer, E. J., Moore, P. W., & Houser, D. S. (2005). Instrumenting free-swimming dolphins echolocating in open water. Journal of the Acoustical Society of America, 117(4), 2301–2307.PubMedCrossRefGoogle Scholar
  38. Moore, P. W. (1997). Dolphin psychoacoustic. Bioacoustics, 8, 61–78.CrossRefGoogle Scholar
  39. Moore, P. W. B., & Pawloski, D. A. (1990). Investigations on the control of echolocation pulses in the dolphin. In J. A. Thomas & R. Kastelein (Eds.), Dolphin sensory processes (pp. 305–316). New York: Plenum Press.Google Scholar
  40. Moore, P. W., Finneran, J., and Houser, D. S. (2004). Hearing loss and echolocation signal change in dolphins. Journal of the Acoustical Society of America 116, 2503-2503.CrossRefGoogle Scholar
  41. Moore, P. W., & Finneran, J. J. (2011). Auditory scene analysis in the echolocating dolphin. Journal of the Acoustical Society of America, 129(4), 2469–2469.CrossRefGoogle Scholar
  42. Moore, P. W., Dankiewicz, L. A., & Houser, D. S. (2008). Beamwidth control and angular target detection in an echolocating bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 124, 3324.PubMedCrossRefGoogle Scholar
  43. Moore, P. W. B., Hall, R. W., Friedl, W. A., & Nachtigall, P. E. (1984). The critical interval in dolphin echolocation: What is it? Journal of the Acoustical Society of America, 76, 314–317.PubMedCrossRefGoogle Scholar
  44. Moore, P. W. B., Roitblat, H. L., Penner, R. H., & Nachtigall, P. E. (1991). Recognizing successive dolphin echoes with an integrator gateway network. Neural Networks, 4, 701–709.CrossRefGoogle Scholar
  45. Moss, C. F., & Zagaeski, M. (1994). Acoustic information available to bats using frequency-modulated sounds for the perception of insect prey. Journal of the Acoustical Society of America, 95, 2745–2756.PubMedCrossRefGoogle Scholar
  46. Moss, C. F., & Schnitzler, H. U. (1995). Behavioral studies of auditory information processing. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats (pp. 87–145). New York: Springer-Verlag.CrossRefGoogle Scholar
  47. Moss, C. F., & Surlykke, A. (2001). Auditory scene analysis by echolocation in bats. Journal of the Acoustical Society of America, 110, 2207–2226.PubMedCrossRefGoogle Scholar
  48. Moss, C. F., & Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, 1–16.Google Scholar
  49. Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive vocal behavior drives perception by echolocation in bats. Current Opinion in Neurobiology, 21, 645–652.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Nachtigall, P. E., & Moore, P. W. B. (1988). Animal sonar: Processes and performance. New York: Plenum Press.CrossRefGoogle Scholar
  51. Neuweiler, G. (1989). Foraging ecology and audition in echolocating bats. Trends in Ecology and Evolution, 4, 160–166.Google Scholar
  52. Roitblat, H. L., Penner, R. H., & Nachtigall, P. E. (1990). Matching-to-sample by an echolocating dolphin (Tursiops truncatus). Journal of Experimental Psychology: Animal Behavior Processes, 16(1), 85–95.PubMedGoogle Scholar
  53. Schnitzler, H. U. (1968). Ultrasonic sounds of horseshoe bats (Chiroptera Rhinolophidae) in different orientation situations. Zeitschrift fur Vergleichende Physiologie, 57, 376–408.CrossRefGoogle Scholar
  54. Schnitzler, H. U., & Grinnell, A. D. (1977). Directional sensitivity of echolocation in horseshoe bat, Rhinolophus ferrumequinum: 1. Directionality of sound emission. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 116(1), 51–61.CrossRefGoogle Scholar
  55. Schnitzler, H. U., & Flieger, E. (1983). Detection of oscillating target movements by echolocation in the greater horseshoe bat. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 153(3), 385–391.CrossRefGoogle Scholar
  56. Schnitzler, H. U., Menne, D., Kober, R., & Heblich, D. (1983). The acoustical image of fluttering insects in echolocating bats. In F. Huber & H. Markl (Eds.), Neuroethology and behavioral physiology: Roots and growing points (pp. 235–250). Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
  57. Schnitzler, H. U., Kalko, E. K. V., Kaipf, I., & Grinnell, A. D. (1994). Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behavioral Ecology and Sociobiology, 35(5), 327–345.CrossRefGoogle Scholar
  58. Schnitzler, H. U., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Research in Ecology and Evolution, 18, 386–394.CrossRefGoogle Scholar
  59. Simmons, J. A., Lavender, W. A., Lavender, B. A., Doroshow, C. A., Kiefer, S. W., & Livingston, R. (1974). Target structure and echo spectral discrimination by echolocating bats. Science, 186(4169), 1130–1132.PubMedCrossRefGoogle Scholar
  60. Simmons, J. A., Moss, C. F., & Ferragamo, M. (1990). Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A- Sensory Neural and Behavioral Physiology, 166, 449–470.Google Scholar
  61. Starkhammar, S., Dankiewicz-Talmadge, L. A., Houser, D. S., & Moore, P. W. (2010). Frequency-dependent echolocation beam pattern of the bottlenose dolphin. Journal of the Acoustical Society of America, 128, 2484.CrossRefGoogle Scholar
  62. Stilz, P. (2004). Akustische untersuchungen zur echoortung bei fledermauesen. Tier Phisiologie. University of Tübingen. Retrieved from http://www.biosonarlab.uni-tuebingen.de/public/diss-stilz/diss.pdf
  63. Surlykke, A., & Moss, C. F. (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. Journal of the Acoustical Society of America, 108, 2419–2429.PubMedCrossRefGoogle Scholar
  64. Surlykke, A., Ghose, K., & Moss, C. F. (2009). Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. Journal of Experimental Biology, 212, 1011–1020.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Ulanovsky, N., Fenton, M. B., Tsoar, A., & Korine, C. (2004). Dynamics of jamming avoidance in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 271, 1467–1475.Google Scholar
  66. Urick, R. J. (1975). Rician distribution and amplitude fluctuation of transmitted signals in sea. Journal of the Acoustical Society of America, 57, S59–860.CrossRefGoogle Scholar
  67. Urick, R. J. (1983). Principles of underwater sound. New York: McGraw-Hill.Google Scholar
  68. Vanderelst, D., De Mey, F., Peremans, H., Geipel, I., Kalko, E. K. V., & Firzlaff, U. (2010). What noseleaves do for FM bats depends on their degree of sensorial specialization. Public Library of Science: One, 5(8), e11893.Google Scholar
  69. Vel’min, V. A., & Dubrovskiy, N. A. (1976). The critical interval of active hearing in dolphins. Soviet Physics: Acoustics, 2, 351–352.Google Scholar
  70. von der Emde, G., & Menne, D. (1989). Discrimination of insect wingbeat frequencies by the bat Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 164(5), 663–671.CrossRefGoogle Scholar
  71. von der Emde, G., & Schnitzler, H. U. (1990). Classification of insects by echolocating greater horseshoe bats. Journal of Comparative Physiology A- Sensory Neural and Behavioral Physiology, 167(3), 423–430.CrossRefGoogle Scholar
  72. Xitco, M. J., Jr., & Roitblat, H. L. (1996). Object recognition through eavesdropping: Passive echolocation in bottlenose dolphins (Tursiops truncatus), Animal Learning & Behavior 24, 355–365.CrossRefGoogle Scholar
  73. Yovel, Y., Franz, M. O., Stilz, P., & Schnitzler, H. U. (2008). Plant classification from bat-like echolocation signals. Public Library of Science: Computational Biology, 4, e1000032.Google Scholar
  74. Yovel, Y., Stilz, P., Franz, M. O., Boonman, A., & Schnitzler, H. U. (2009). What a plant sounds like: The statistics of vegetation echoes as received by echolocating bats. Public Library of Science: Computational Biology, 5, e1000429.Google Scholar
  75. Yovel, Y., Franz, M.O., Stilz, P., & Schnitzler, H. U. (2011). Complex echo classification by echo-locating bats: A review. Journal of Comparative Physiology A: Sensory Neural and Behavioral Physiology, 197, 475–490.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  • Cynthia F. Moss
    • 1
  • Chen Chiu
    • 1
  • Patrick W. Moore
    • 2
  1. 1.Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreUSA
  2. 2.National Marine Mammal FoundationSan DiegoUSA

Personalised recommendations