Skip to main content
Book cover

Biosonar pp 169–193Cite as

Localization and Classification of Targets by Echolocating Bats and Dolphins

Part of the Springer Handbook of Auditory Research book series (SHAR,volume 51)

Abstract

Echolocating bats and dolphins project sounds into their surroundings and listen to the returning echoes to detect and identify objects. These animals must assemble images to locate and classify objects while dealing with a wide variety of acoustic interference that is dependent on the acoustic medium and the amount of clutter, or the distribution of extraneous objects, in the environment. For both dolphins and bats, the ability to detect and resolve targets of interest is due to the intricacies of the sound projection and echo reception systems in association with sophisticated neural processing. However, their sounds, transmitting and receiving systems, and acoustic environments differ, which makes it difficult to come up with a unified account of neural processing. This chapter attempts to provide an integrated view of findings regarding the principal purpose of wideband biosonar with regard to the localization and classification of targets based on accurate determination of the delay and spectrum of echoes.

Keywords

  • Biosonar
  • Echo delay
  • Echo spectrum
  • Eptesicus fuscus
  • Glint delay
  • Pulse-echo ambiguity
  • Tursiops truncatus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-9146-0_6
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-9146-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9

References

  • Akamatsu, T., Wang, D., Nakamura, K., & Wang, K. (1998). Echolocation range of captive and free-ranging baiju (Lipotes vexillifer), finless porpoise (Neophocaena phocaenoides), and bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 104(4), 2511–2516.

    CAS  PubMed  CrossRef  Google Scholar 

  • Altes, R. A., Dankiewicz, L. A., Moore, P. W., & Helweg, D. A. (2003). Multiecho processing by an echolocating dolphin. Journal of the Acoustical Society of America, 114(2), 1155–1166.

    CrossRef  Google Scholar 

  • Au, W. L., & Snyder, K. J. (1980). Long-range target detection in open waters by an echolocating Atlantic bottlenosed dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 68(4), 1077–1084.

    CrossRef  Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.

    CrossRef  Google Scholar 

  • Au, W. W. L., & Turl, C. W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenosed dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 73(5), 1676–1681.

    CAS  PubMed  CrossRef  Google Scholar 

  • Au, W. W. L., Floyd, R. W., Penner, R. H., & Murchison, A. E. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. Journal of the Acoustical Society of America, 56(4), 1280–1290.

    CAS  PubMed  CrossRef  Google Scholar 

  • Au, W. W. L., Moore, P. W. B., & Pawloski, D. A. (1988). Detection of complex echoes in noise by an echolocating dolphin. Journal of the Acoustical Society of America, 83(2), 662–668.

    CAS  PubMed  CrossRef  Google Scholar 

  • Au, W. W. L., Benoit-Bird, K. J., & Kastelein, R. A. (2007). Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises. Journal of the Acoustical Society of America, 121(6), 3954–3962.

    PubMed  CrossRef  Google Scholar 

  • Au, W. W. L., Branstetter, B. K., Benoit-Bird, K. J., & Kastelein, R. A. (2009). Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises. Journal of the Acoustical Society of America, 126(1), 460–467.

    PubMed  CrossRef  Google Scholar 

  • Aytekin, M., Mao, B., & Moss, C. F. (2010). Spatial perception and adaptive sonar behavior. Journal of the Acoustical Society of America, 128(6), 3788–3798.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Burkard, R., & Moss, C. F. (1994). The brain-stem auditory-evoked response in the big brown bat (Eptesicus fuscus) to clicks and frequency-modulated sweeps. Journal of the Acoustical Society of America, 96(2), 801–810.

    CAS  PubMed  CrossRef  Google Scholar 

  • Capus, C., Pailhas, Y., Brown, K., Lane, D. M., Moore, P. W., & Houser, D. (2007). Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 121(1), 594–604.

    PubMed  CrossRef  Google Scholar 

  • Ferragamo, M., Haresign, T., & Simmons, J. A. (1998). Frequency tuning, latencies, and responses to frequency-modulated sweeps in the inferior colliculus of the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A, 182, 65–79.

    CAS  CrossRef  Google Scholar 

  • Finneran, J. J. (2013). Dolphin “packet” use during long-range echolocation tasks. Journal of the Acoustical Society of America, 133(3), 1796–1810.

    PubMed  CrossRef  Google Scholar 

  • Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S., & Moss, C. F. (2006). Echolocating bats use a nearly time-optimal strategy to intercept prey. PLos Biology, 4(5), e108.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Glaser, W. (1974). Zur hypothese des Optimalenfangs bei der Fledermausortung. Journal of Comparative Physiology A, 94(3), 227–248.

    CrossRef  Google Scholar 

  • Helweg, D. A., Moore, P. W., Dankiewicz, L. A., Zafran, J. M., & Brill, R. L. (2003). Discrimination of complex synthetic echoes by an echolocating bottlenose dolphin. Journal of the Acoustical Society of America, 113(2), 1138–1144.

    PubMed  CrossRef  Google Scholar 

  • Hiryu, S., Bates, M. E., Simmons, J. A., & Riquimaroux, H. (2010). FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proceedings of the National Academy of Sciences of the USA, 107(15), 7048–7053.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Holderied, M. W., Baker, C. J., Vespe, M., & Jones, G. (2008). Understanding signal design during the pursuit of aerial insects by echolocating bats: Tools and applications. Integrative and Comparative Biology, 48, 74–84.

    PubMed  CrossRef  Google Scholar 

  • Houser, D. S., Helweg, D. A., & Moore, P. W. B. (1999). Classification of dolphin echolocation clicks by energy and frequency distributions. Journal of the Acoustical Society of America, 106(3), 1579–1585.

    CAS  PubMed  CrossRef  Google Scholar 

  • Houston, R. D., Boonman, A. M., & Jones, G. (2004). Do echolocation signal parameters restrict bats’ choice of prey? In J. A. Thomas, C. F. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 339–345). Chicago: University of Chicago Press.

    Google Scholar 

  • Imaizumi, T., Furusawa, M., Akamatsu, T., & Nishimori, Y. (2008). Measuring the target strength spectra of fish using dolphin-like short broadband sonar signals. Journal of the Acoustical Society of America, 124(6), 3440–3449.

    PubMed  CrossRef  Google Scholar 

  • Ivanov, M. P. (2004). Dolphin’s ecolocation signals in a complicated acoustic environment. Acoustical Physics, 50(4), 469–479.

    CrossRef  Google Scholar 

  • Jensen, F. H., Bejder, L., Wahlberg, M., & Madsen, P. T. (2009). Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. Journal of Experimental Biology, 212, 1078–1086.

    Google Scholar 

  • Kick, S. A. (1982). Target-detection by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A, 145(4), 431–435.

    CrossRef  Google Scholar 

  • Kick, S. A., & Simmons, J. A. (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. Journal of Neuroscience, 4, 2705–2737.

    Google Scholar 

  • Ma, X., & Suga, N. (2008). Corticofugal modulation of the paradoxical latency shifts of inferior collicular neurons. Journal of Neurophysiology, 100, 1127–1134.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Masters, W. M., Moffat, A. J., & Simmons, J. A. (1985). Sonar tracking of horizontally moving targets by the big brown bat Eptesicus fuscus. Science, 228, 1331–1333.

    CAS  PubMed  CrossRef  Google Scholar 

  • Matsuo, I., Imaizumi, T., Akamatsu, T., Furusawa, M., & Nishimori, Y. (2009). Analysis of the temporal structure of fish echoes using the dolphin broadband sonar signal. Journal of the Acoustical Society of America, 126(1), 444–450.

    PubMed  CrossRef  Google Scholar 

  • Moore, P. W. B., Hall, R. W., Friedl, W. A., & Nachtigall, P. E. (1984). The critical interval in dolphin echolocation: What is it? [Letters to the Editor]. Journal of the Acoustical Society of America, 76, 314–317.

    CAS  PubMed  CrossRef  Google Scholar 

  • Moss, C. F., & Zagaeski, M. (1994). Acoustic information available to bats using frequency modulated sonar sounds for the perception of insect prey. Journal of the Acoustical Society of America, 95, 2745–2756.

    CAS  PubMed  CrossRef  Google Scholar 

  • Moss, C. F., & Schnitzler, H.-U. (1995). Behavioral studies of auditory information processing. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats (pp. 87–145). New York: Springer-Verlag.

    CrossRef  Google Scholar 

  • Moss, C. F., & Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, 1–16.

    Google Scholar 

  • Muller, M. W., Au, W. W. L., Nachtigall, P. E., Allen, J. R. III., & Breese, M. (2007). Phantom echo highlight amplitude and temporal difference resolutions of an echolocating dolphin, Tursiops truncatus. Journal of the Acoustical Society of America, 122, 2255–2262.

    Google Scholar 

  • Muller, M. W., Allen, J. S., Au, W. W. L., & Nachtigall, P. E. (2008). Time-frequency analysis and modeling of the backscatter of categorized dolphin echolocation clicks for target discrimination. Journal of the Acoustical Society of America, 124(1), 657–666.

    PubMed  CrossRef  Google Scholar 

  • Murchison, A. E. (1980). Detection range and range resolution of echolocating bottlenose porpoise (Tursiops truncatus). In R. G. Busnel & J. F. Fish (Eds.), Animal sonar systems (pp. 43–70). New York: Plenum Press.

    CrossRef  Google Scholar 

  • Neuweiler, G. (2000). Biology of bats. Oxford: Oxford University Press.

    Google Scholar 

  • Penner, R. H. (1988). Attention and detection in dolphin echolocation. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar processes and performance (pp. 707–713). New York: Plenum Press.

    CrossRef  Google Scholar 

  • Petrites, A. E., Eng, O. S., Mowlds, D. S., Simmons, J. A., & DeLong, C. M. (2009). Interpulse interval modulation by echolocating big brown bats (Eptesicus fuscus) in different densities of obstacle clutter. Journal of Comparative Physiology A, 195(6), 603–617.

    CrossRef  Google Scholar 

  • Saillant, P. A., Simmons, J. A., Bouffard, F. H., Lee, D. N., & Dear, S. P. (2007). Biosonar signals impinging on the target during interception by big brown bats, Eptesicus fuscus. Journal of the Acoustical Society of America, 121(5), 3001–3010.

    PubMed  CrossRef  Google Scholar 

  • Sanderson, M. I., & Simmons, J. A. (2000). Neural responses to overlapping FM sounds in the inferior colliculus of echolocating bats. Journal of Neurophysiology, 83, 1840–1855.

    CAS  PubMed  Google Scholar 

  • Sanderson, M. I., & Simmons, J. A. (2002). Selectivity for echo spectral interference and delay in the auditory cortex of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology, 87, 2823–2834.

    PubMed  Google Scholar 

  • Schnitzler, H.-U., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18, 386–394.

    CrossRef  Google Scholar 

  • Simmons, J. A. (2005). Big brown bats and June beetles: Multiple pursuit strategies in a seasonal acoustic predator-prey system. Acoustic Research Letters Online, 6, 238–242.

    CrossRef  Google Scholar 

  • Simmons, J. A. (2012). Bats use a neuronally implemented computational acoustic model to form sonar images. Current Opinion in Neurobiology, 22, 311–319.

    CAS  PubMed  CrossRef  Google Scholar 

  • Simmons, J. A., & Stein, R. A. (1980). Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation. Journal of Comparative Physiology A, 135(1), 61–84.

    CrossRef  Google Scholar 

  • Simmons, J. A., & Grinnell, A. D. (1988). The performance of echolocation: Acoustic images perceived by echolocating bats. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar processes and performance (pp. 353–385). New York: Plenum Press.

    CrossRef  Google Scholar 

  • Simmons, J. A., & Chen, L. (1989). The acoustic basis for target discrimination by FM echolocating bats. Journal of the Acoustical Society of America, 86, 1333–1350.

    CAS  PubMed  CrossRef  Google Scholar 

  • Simmons, J. A., & Gaudette, J. E. (2012). Biosonar echo processing. IET Radar, Sonar and Navigation, 6, 556–565.

    CrossRef  Google Scholar 

  • Simmons, J. A., Ferragamo, M., Moss, C. F., Stevenson, S. B., & Altes, R. A. (1990). Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation. Journal of Comparative Physiology A, 167(5), 589–616.

    CAS  CrossRef  Google Scholar 

  • Simmons, J. A., Moffat, A. J. M., & Masters, W. M. (1992). Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 91, 1150–1163.

    CAS  PubMed  CrossRef  Google Scholar 

  • Simmons, J. A., Ferragamo, M. J., Saillant, P. A., Haresign, T., Wotton, J. M., Dear, S. P., & Lee, D. N. (1995). Auditory dimensions of acoustic images in echolocation. In A. N. Popper & R. R. Fay (Eds.), Hearing in bats (pp. 146–190). New York: Springer-Verlag.

    CrossRef  Google Scholar 

  • Surlykke, A. (2004). The relationship of detection thresholds to the number of echoes in the big brown bat, Eptesicus fuscus. In J. A. Thomas, C. F. Moss & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 268–272). Chicago: University of Chicago Press.

    Google Scholar 

  • Suthers, R. A. (2004). Vocal mechanisms in birds and bats: A comparative view. Anais da Academia Brasileira de Ciências, 76, 247–252.

    PubMed  CrossRef  Google Scholar 

  • Valentine, D. E., & Moss, C. F. (1998). Sensorimotor integration in bat sonar. In T. H. Kunz & P. A. Racey (Eds.), Bats: Phylogeny, morphology, echolocation and conservation biology (pp. 220–230). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Vel’min, V. A., & Dubrovskii, N. A. (1976). Critical interval of active hearing in dolphins. Soviet Physics Acoustics–USSR, 22, 351–352.

    Google Scholar 

  • Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., Brain, K. L., Faure, P. A., & Fenton, M. B. (2010). A bony connection signals laryngeal echolocation in bats. Nature, 463, 939–942.

    CAS  PubMed  CrossRef  Google Scholar 

  • Wahlberg, M., Jensen, F. H., Aguilar Soto, N., Beedholm, K., Bejder, L., Oliveira, C., Rasmussen, M., Simon, M., Villadsgaard, A., & Madsen, P. T. (2011). Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus). Journal of the Acoustical Society of America, 130(4), 2263–2274.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Simmons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Simmons, J.A., Houser, D., Kloepper, L. (2014). Localization and Classification of Targets by Echolocating Bats and Dolphins. In: Surlykke, A., Nachtigall, P., Fay, R., Popper, A. (eds) Biosonar. Springer Handbook of Auditory Research, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9146-0_6

Download citation