Biosonar pp 169-193

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 51) | Cite as

Localization and Classification of Targets by Echolocating Bats and Dolphins

Chapter

Abstract

Echolocating bats and dolphins project sounds into their surroundings and listen to the returning echoes to detect and identify objects. These animals must assemble images to locate and classify objects while dealing with a wide variety of acoustic interference that is dependent on the acoustic medium and the amount of clutter, or the distribution of extraneous objects, in the environment. For both dolphins and bats, the ability to detect and resolve targets of interest is due to the intricacies of the sound projection and echo reception systems in association with sophisticated neural processing. However, their sounds, transmitting and receiving systems, and acoustic environments differ, which makes it difficult to come up with a unified account of neural processing. This chapter attempts to provide an integrated view of findings regarding the principal purpose of wideband biosonar with regard to the localization and classification of targets based on accurate determination of the delay and spectrum of echoes.

Keywords

Biosonar Echo delay Echo spectrum Eptesicus fuscus Glint delay Pulse-echo ambiguity Tursiops truncatus 

References

  1. Akamatsu, T., Wang, D., Nakamura, K., & Wang, K. (1998). Echolocation range of captive and free-ranging baiju (Lipotes vexillifer), finless porpoise (Neophocaena phocaenoides), and bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 104(4), 2511–2516.PubMedCrossRefGoogle Scholar
  2. Altes, R. A., Dankiewicz, L. A., Moore, P. W., & Helweg, D. A. (2003). Multiecho processing by an echolocating dolphin. Journal of the Acoustical Society of America, 114(2), 1155–1166.CrossRefGoogle Scholar
  3. Au, W. L., & Snyder, K. J. (1980). Long-range target detection in open waters by an echolocating Atlantic bottlenosed dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 68(4), 1077–1084.CrossRefGoogle Scholar
  4. Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.CrossRefGoogle Scholar
  5. Au, W. W. L., & Turl, C. W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenosed dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 73(5), 1676–1681.PubMedCrossRefGoogle Scholar
  6. Au, W. W. L., Floyd, R. W., Penner, R. H., & Murchison, A. E. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. Journal of the Acoustical Society of America, 56(4), 1280–1290.PubMedCrossRefGoogle Scholar
  7. Au, W. W. L., Moore, P. W. B., & Pawloski, D. A. (1988). Detection of complex echoes in noise by an echolocating dolphin. Journal of the Acoustical Society of America, 83(2), 662–668.PubMedCrossRefGoogle Scholar
  8. Au, W. W. L., Benoit-Bird, K. J., & Kastelein, R. A. (2007). Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises. Journal of the Acoustical Society of America, 121(6), 3954–3962.PubMedCrossRefGoogle Scholar
  9. Au, W. W. L., Branstetter, B. K., Benoit-Bird, K. J., & Kastelein, R. A. (2009). Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises. Journal of the Acoustical Society of America, 126(1), 460–467.PubMedCrossRefGoogle Scholar
  10. Aytekin, M., Mao, B., & Moss, C. F. (2010). Spatial perception and adaptive sonar behavior. Journal of the Acoustical Society of America, 128(6), 3788–3798.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Burkard, R., & Moss, C. F. (1994). The brain-stem auditory-evoked response in the big brown bat (Eptesicus fuscus) to clicks and frequency-modulated sweeps. Journal of the Acoustical Society of America, 96(2), 801–810.PubMedCrossRefGoogle Scholar
  12. Capus, C., Pailhas, Y., Brown, K., Lane, D. M., Moore, P. W., & Houser, D. (2007). Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 121(1), 594–604.PubMedCrossRefGoogle Scholar
  13. Ferragamo, M., Haresign, T., & Simmons, J. A. (1998). Frequency tuning, latencies, and responses to frequency-modulated sweeps in the inferior colliculus of the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A, 182, 65–79.CrossRefGoogle Scholar
  14. Finneran, J. J. (2013). Dolphin “packet” use during long-range echolocation tasks. Journal of the Acoustical Society of America, 133(3), 1796–1810.PubMedCrossRefGoogle Scholar
  15. Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S., & Moss, C. F. (2006). Echolocating bats use a nearly time-optimal strategy to intercept prey. PLos Biology, 4(5), e108.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Glaser, W. (1974). Zur hypothese des Optimalenfangs bei der Fledermausortung. Journal of Comparative Physiology A, 94(3), 227–248.CrossRefGoogle Scholar
  17. Helweg, D. A., Moore, P. W., Dankiewicz, L. A., Zafran, J. M., & Brill, R. L. (2003). Discrimination of complex synthetic echoes by an echolocating bottlenose dolphin. Journal of the Acoustical Society of America, 113(2), 1138–1144.PubMedCrossRefGoogle Scholar
  18. Hiryu, S., Bates, M. E., Simmons, J. A., & Riquimaroux, H. (2010). FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proceedings of the National Academy of Sciences of the USA, 107(15), 7048–7053.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Holderied, M. W., Baker, C. J., Vespe, M., & Jones, G. (2008). Understanding signal design during the pursuit of aerial insects by echolocating bats: Tools and applications. Integrative and Comparative Biology, 48, 74–84.PubMedCrossRefGoogle Scholar
  20. Houser, D. S., Helweg, D. A., & Moore, P. W. B. (1999). Classification of dolphin echolocation clicks by energy and frequency distributions. Journal of the Acoustical Society of America, 106(3), 1579–1585.PubMedCrossRefGoogle Scholar
  21. Houston, R. D., Boonman, A. M., & Jones, G. (2004). Do echolocation signal parameters restrict bats’ choice of prey? In J. A. Thomas, C. F. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 339–345). Chicago: University of Chicago Press.Google Scholar
  22. Imaizumi, T., Furusawa, M., Akamatsu, T., & Nishimori, Y. (2008). Measuring the target strength spectra of fish using dolphin-like short broadband sonar signals. Journal of the Acoustical Society of America, 124(6), 3440–3449.PubMedCrossRefGoogle Scholar
  23. Ivanov, M. P. (2004). Dolphin’s ecolocation signals in a complicated acoustic environment. Acoustical Physics, 50(4), 469–479.CrossRefGoogle Scholar
  24. Jensen, F. H., Bejder, L., Wahlberg, M., & Madsen, P. T. (2009). Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. Journal of Experimental Biology, 212, 1078–1086.Google Scholar
  25. Kick, S. A. (1982). Target-detection by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A, 145(4), 431–435.CrossRefGoogle Scholar
  26. Kick, S. A., & Simmons, J. A. (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. Journal of Neuroscience, 4, 2705–2737.Google Scholar
  27. Ma, X., & Suga, N. (2008). Corticofugal modulation of the paradoxical latency shifts of inferior collicular neurons. Journal of Neurophysiology, 100, 1127–1134.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Masters, W. M., Moffat, A. J., & Simmons, J. A. (1985). Sonar tracking of horizontally moving targets by the big brown bat Eptesicus fuscus. Science, 228, 1331–1333.PubMedCrossRefGoogle Scholar
  29. Matsuo, I., Imaizumi, T., Akamatsu, T., Furusawa, M., & Nishimori, Y. (2009). Analysis of the temporal structure of fish echoes using the dolphin broadband sonar signal. Journal of the Acoustical Society of America, 126(1), 444–450.PubMedCrossRefGoogle Scholar
  30. Moore, P. W. B., Hall, R. W., Friedl, W. A., & Nachtigall, P. E. (1984). The critical interval in dolphin echolocation: What is it? [Letters to the Editor]. Journal of the Acoustical Society of America, 76, 314–317.PubMedCrossRefGoogle Scholar
  31. Moss, C. F., & Zagaeski, M. (1994). Acoustic information available to bats using frequency modulated sonar sounds for the perception of insect prey. Journal of the Acoustical Society of America, 95, 2745–2756.PubMedCrossRefGoogle Scholar
  32. Moss, C. F., & Schnitzler, H.-U. (1995). Behavioral studies of auditory information processing. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats (pp. 87–145). New York: Springer-Verlag.CrossRefGoogle Scholar
  33. Moss, C. F., & Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, 1–16.Google Scholar
  34. Muller, M. W., Au, W. W. L., Nachtigall, P. E., Allen, J. R. III., & Breese, M. (2007). Phantom echo highlight amplitude and temporal difference resolutions of an echolocating dolphin, Tursiops truncatus. Journal of the Acoustical Society of America, 122, 2255–2262.Google Scholar
  35. Muller, M. W., Allen, J. S., Au, W. W. L., & Nachtigall, P. E. (2008). Time-frequency analysis and modeling of the backscatter of categorized dolphin echolocation clicks for target discrimination. Journal of the Acoustical Society of America, 124(1), 657–666.PubMedCrossRefGoogle Scholar
  36. Murchison, A. E. (1980). Detection range and range resolution of echolocating bottlenose porpoise (Tursiops truncatus). In R. G. Busnel & J. F. Fish (Eds.), Animal sonar systems (pp. 43–70). New York: Plenum Press.CrossRefGoogle Scholar
  37. Neuweiler, G. (2000). Biology of bats. Oxford: Oxford University Press.Google Scholar
  38. Penner, R. H. (1988). Attention and detection in dolphin echolocation. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar processes and performance (pp. 707–713). New York: Plenum Press.CrossRefGoogle Scholar
  39. Petrites, A. E., Eng, O. S., Mowlds, D. S., Simmons, J. A., & DeLong, C. M. (2009). Interpulse interval modulation by echolocating big brown bats (Eptesicus fuscus) in different densities of obstacle clutter. Journal of Comparative Physiology A, 195(6), 603–617.CrossRefGoogle Scholar
  40. Saillant, P. A., Simmons, J. A., Bouffard, F. H., Lee, D. N., & Dear, S. P. (2007). Biosonar signals impinging on the target during interception by big brown bats, Eptesicus fuscus. Journal of the Acoustical Society of America, 121(5), 3001–3010.PubMedCrossRefGoogle Scholar
  41. Sanderson, M. I., & Simmons, J. A. (2000). Neural responses to overlapping FM sounds in the inferior colliculus of echolocating bats. Journal of Neurophysiology, 83, 1840–1855.PubMedGoogle Scholar
  42. Sanderson, M. I., & Simmons, J. A. (2002). Selectivity for echo spectral interference and delay in the auditory cortex of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology, 87, 2823–2834.PubMedGoogle Scholar
  43. Schnitzler, H.-U., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18, 386–394.CrossRefGoogle Scholar
  44. Simmons, J. A. (2005). Big brown bats and June beetles: Multiple pursuit strategies in a seasonal acoustic predator-prey system. Acoustic Research Letters Online, 6, 238–242.CrossRefGoogle Scholar
  45. Simmons, J. A. (2012). Bats use a neuronally implemented computational acoustic model to form sonar images. Current Opinion in Neurobiology, 22, 311–319.PubMedCrossRefGoogle Scholar
  46. Simmons, J. A., & Stein, R. A. (1980). Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation. Journal of Comparative Physiology A, 135(1), 61–84.CrossRefGoogle Scholar
  47. Simmons, J. A., & Grinnell, A. D. (1988). The performance of echolocation: Acoustic images perceived by echolocating bats. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar processes and performance (pp. 353–385). New York: Plenum Press.CrossRefGoogle Scholar
  48. Simmons, J. A., & Chen, L. (1989). The acoustic basis for target discrimination by FM echolocating bats. Journal of the Acoustical Society of America, 86, 1333–1350.PubMedCrossRefGoogle Scholar
  49. Simmons, J. A., & Gaudette, J. E. (2012). Biosonar echo processing. IET Radar, Sonar and Navigation, 6, 556–565.CrossRefGoogle Scholar
  50. Simmons, J. A., Ferragamo, M., Moss, C. F., Stevenson, S. B., & Altes, R. A. (1990). Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation. Journal of Comparative Physiology A, 167(5), 589–616.CrossRefGoogle Scholar
  51. Simmons, J. A., Moffat, A. J. M., & Masters, W. M. (1992). Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 91, 1150–1163.PubMedCrossRefGoogle Scholar
  52. Simmons, J. A., Ferragamo, M. J., Saillant, P. A., Haresign, T., Wotton, J. M., Dear, S. P., & Lee, D. N. (1995). Auditory dimensions of acoustic images in echolocation. In A. N. Popper & R. R. Fay (Eds.), Hearing in bats (pp. 146–190). New York: Springer-Verlag.CrossRefGoogle Scholar
  53. Surlykke, A. (2004). The relationship of detection thresholds to the number of echoes in the big brown bat, Eptesicus fuscus. In J. A. Thomas, C. F. Moss & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 268–272). Chicago: University of Chicago Press.Google Scholar
  54. Suthers, R. A. (2004). Vocal mechanisms in birds and bats: A comparative view. Anais da Academia Brasileira de Ciências, 76, 247–252.PubMedCrossRefGoogle Scholar
  55. Valentine, D. E., & Moss, C. F. (1998). Sensorimotor integration in bat sonar. In T. H. Kunz & P. A. Racey (Eds.), Bats: Phylogeny, morphology, echolocation and conservation biology (pp. 220–230). Washington, DC: Smithsonian Institution Press.Google Scholar
  56. Vel’min, V. A., & Dubrovskii, N. A. (1976). Critical interval of active hearing in dolphins. Soviet Physics Acoustics–USSR, 22, 351–352.Google Scholar
  57. Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., Brain, K. L., Faure, P. A., & Fenton, M. B. (2010). A bony connection signals laryngeal echolocation in bats. Nature, 463, 939–942.PubMedCrossRefGoogle Scholar
  58. Wahlberg, M., Jensen, F. H., Aguilar Soto, N., Beedholm, K., Bejder, L., Oliveira, C., Rasmussen, M., Simon, M., Villadsgaard, A., & Madsen, P. T. (2011). Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus). Journal of the Acoustical Society of America, 130(4), 2263–2274.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  • James A. Simmons
    • 1
  • Dorian Houser
    • 2
  • Laura Kloepper
    • 1
  1. 1.Department of NeuroscienceBrown UniversityProvidenceUSA
  2. 2.National Marine Mammal FoundationSan DiegoUSA

Personalised recommendations