Biosonar pp 61-105 | Cite as

Production of Biosonar Signals: Structure and Form

Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 51)

Abstract

Even though they live in quite different habitats, many bats, a few birds, and a number of marine mammals, including dolphins, rely on biosonar for navigation and foraging for food. Despite the fact that bats are aerial echolocators, whereas dolphins use underwater sonar, both groups depend on their sonar signals to detect, discriminate, locate, track, and catch small moving prey. The large differences in the physical characteristics of air and water guarantee that vastly different processes are required in the type of biosonar signals that are used and in the means by which they are generated. Water is approximately 850 times denser than air and the speed of sound is approximately 4.5 times faster in water. Absorption of sound in water is considerably less than in air. The relative impedance between objects in air and in water has caused both the echoic process and the mechanism by which biosonar pulses are produced to differ between these media. The sonar signals of most bats are produced in their larynx. Exceptions include a few bats and echolocating birds that produce sonar clicks with their tongue or syrinx, respectively. This is quite different than dolphins, which produce biosonar signals exclusively through their nasal system. The large size and marine environment of dolphins has favored research on the site of sound production and the propagation of sonar signals through the head and into the water. Research on echolocating bats and birds, on the other hand, has tended to focus on the neuromuscular physiology and biomechanics of sonar pulse production. In this chapter we review the current understanding of how each of these vertebrate groups produce and control their biosonar signals.

Keywords

Sound production Echolocation Sonar pulse Clicks Phonic lips Melon Larynx Frequency spectrum Waveform Laryngeally echolocating bats Vocal membrane Acoustic energy Acoustic filter FM signal CF-FM signal Search phase Approach phase Terminal buzz phase 

References

  1. Amundin, M., & Andersen, S. H. (1983). Bony nares air pressure and nasal plug muscle activity during click production in the harbour porpoise, Phocoena phocoena, and the bottlenosed dolphin, Tursiops truncates. Journal of Experimental Biology, 105, 275–282.Google Scholar
  2. Aroyan, J. L. (2001). Three-dimensional modeling of hearing in Delphinus delphis. Journal of the Acoustical Society of America, 110, 3305–3318.PubMedGoogle Scholar
  3. Aroyan, J. L., Cranford, T. W., Kent, J., & Norris, K. S. (1992). Computer modeling of acoustic beam formation in Delphinus delphis. Journal of the Acoustical Society of America, 95, 2539–2545.Google Scholar
  4. Au, W. W. L. (1993). The sonar of dolphins. New York: Springer Verlag.Google Scholar
  5. Au, W. W. L. (2004). A comparison of the sonar capabilities of bats and dolphins. In J. Thomas, C. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. xiii–xxvii). Chicago: University of Chicago Press.Google Scholar
  6. Au, W. W. L., & Hastings, M. C. (2008). Principles of marine bioacoustics. New York: Springer.Google Scholar
  7. Au, W. W. L., Floyd, R. W., Penner, R. H., & Murchison, A. E. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. Journal of the Acoustical Society of America, 56, 1280–1290.PubMedGoogle Scholar
  8. Au, W. W. L., Carder, D. A, Penner, R. H., & Scronce, B. L. (1985). Demonstration of adaptation in beluga whale echolocation signals. Journal of the Acoustical Society of America, 77, 726–730.PubMedGoogle Scholar
  9. Au, W. W. L., Pawloski, J. L., Nachtigall, P. E., Blonze, M., & Gisiner, R. C. (1995). Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 98, 51–59.Google Scholar
  10. Au, W. W. L., Houser, D. S., Finneran, J., Lee, W-J, Talmadge, L. A., & Moore, P. W. (2010). The acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (Tursiops truncatus). Journal of the Acoustical Society of America, 128, 1426–1434.PubMedGoogle Scholar
  11. Au, W. W. L., Branstetter, B., Moore, P. W., & Finneran, J. J. (2012). Dolphin biosonar signals measured at extreme off-axis angles: Insights to sound propagation in the head. Journal of the Acoustical Society of America, 132, 1119–1206.Google Scholar
  12. Aubauer, R., Au, W. W. L., Nachtigall, P. E., Pawloski, J. A., Pawloski, D. A., & DeLong, C. (2000). Classification of electronically generated phantom targets by an Atlantic bottle nose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 107, 2750–2754.Google Scholar
  13. Bass, A. H., Gilland, E. H., & Baker, R. (2008). Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment. Science, 321, 417–421.PubMedCentralPubMedGoogle Scholar
  14. Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). Journal of the Acoustical Society of America, 129, 427–435. PubMedGoogle Scholar
  15. Clement, M. J., Gupta, P., Dietz, N., & Kanwal, J. S. (2006). Audiovocal communication and social behavior in mustached bats. In J. S. Kanwal & G. Ehret (Ed.), Behavior and neurodynamics for auditory communication (pp. 57–84). New York: Cambridge University Press.Google Scholar
  16. Coles, R. B., Konish, M., & Pettigrew, J. D. (1987). Hearing and echolocation in the Australian Grey Swiftlet, Collocalia Spodiopygia. Journal Experimental Biology, 129, 365–371.Google Scholar
  17. Cranford, T. W. (1988). The anatomy of acoustic structures in the spinner dolphin forehead as shown by X-ray computed tomography and computer graphics. In P. E. Nachtigall, & P. W. B. Moore (Eds.), Animal sonar: Processes and performance (pp. 67–77). New York: Plenum Press.Google Scholar
  18. Cranford, T. W. (2000). In search of impulse sound sources in Odontocetes. In W. W. L. Au, A. N. Popper, & Fay, R. R. (Eds.) Hearing by whales and dolphins (pp. 109–156). New York: Springer-Verlag.Google Scholar
  19. Cranford, T. W., Amundin, M., & Norris, K. S. (1996). Functional morphology and homology in the odontocete nasal complex: Implications for sound generation. Journal of Morphology, 228, 223–285.PubMedGoogle Scholar
  20. Cranford, T. W., Van Bonn, W. G., Chaplin, M. S., Carr, J. A., & Kamolnick, T. A. (1997). Visualizing dolphin sonar signal generation using high-speed video endoscopy (A). Journal of the Acoustical. Society of America 102, 3123–3123.Google Scholar
  21. Cranford, T. W., Elsberry, W. R., Van Bonn, W. G., Jeffress, J. A., Chaplin, M. S., Blackwood, D. J., Carder, D. A., Kamolnick, T., Todd, M. A., & Ridgway, S. H. (2011). Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncates): Evidence of two sonar sources. Journal of Experimental Marine Biology and Ecology, 407, 81–96.Google Scholar
  22. Denny, S. (1976). Comparative morphology of the larynx. In R. Hinchcliffe & D. Harrison (Eds.), Scientific foundations of otolaryngology (pp. 536–545). Chicago: Year Book.Google Scholar
  23. Diercks, K. J., Trochta, R. T., Greenlaw, C. F., & Evans, W. E. (1971). Recording and analysis of dolphin echolocation signals. Journal of the Acoustical Society of America, 49, 1729–1733.Google Scholar
  24. Dormer, K. J. (1979). Mechanism of sound production and air recycling in delphinids: Cineradiographic evidence. Journal of the Acoustical Society of America, 65, 229–239.Google Scholar
  25. Durrant, G. E. (1988). Laryngeal control of the duration and frequency of emitted sonar pulses in the echolocating bat, Eptesicus fuscus. Ph.D. dissertation, Indiana University, Bloomington. Available at http://proquest.umi.com/pqdweb?did=745547241&sid=1&Fmt=6&clientId=12010&RQT=309&VName=PQD
  26. Elemans, C. P. H., Mead, A. F., Rome, L. C., & Goller, F. (2008). Superfast vocal muscles control song production in songbirds. PLoS ONE 3, e2581, 2581–2586.Google Scholar
  27. Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333, 1885–1888.PubMedGoogle Scholar
  28. Elias, H. (1907). Zur Anatomie des kehlkopfes der Mikrochiropteren. Morphologischen Jahrbuch, 37, 70–119.Google Scholar
  29. Elsberry, W. R. (2003). Interrelationships between interanarial pressure and biosonar clicks in bottlenose dolphins (Tursiops truncatus). Ph.D. dissertation, Texas A&M University, Galveston.Google Scholar
  30. Evans, W E. (1973). Echolocation by marine delphinids and one species of fresh-water dolphin. Journal of the Acoustical Society of America, 54, 191–199.Google Scholar
  31. Fant, G. (1960). Acoustic theory of speech production. The Hague: Mouton.Google Scholar
  32. Fattu, J. M., & Suthers, R. A. (1981). Subglottic pressure and the control of phonation by the echolocating bat, Eptesicus. Journal of Comparative Physiology, 143, 465–475.Google Scholar
  33. Fenton, M. B. (1984). Echolocation: Implications for ecology and evolution of bats. Quarterly Review of Biology, 59, 33–52.Google Scholar
  34. Fenzl, T., & Schuller, G. (2005). Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor. BMC Biology, 3, 1–12.Google Scholar
  35. Fenzl, T., & Schuller, G. (2007). Dissimilarities in the vocal control over communication and echolocation calls in bats. Behavioural Brain Research, 182,173–179.PubMedGoogle Scholar
  36. Fischer, H., & Gerken, H. (1961). Le larynx de la chauve-souris (Myotis myotis) et le larynx humain. Annales d’Oto-Laryngologie, 78, 577–585.PubMedGoogle Scholar
  37. Fischer, H., & Vomel, H. J. (1961). Der Ultraschallapparat des Larynx von Myotis myotis. Eine morphologische Studie über einen primitiven Saugerkehlkopf. Morphologische Jahrbuch, 102, 201–226.Google Scholar
  38. Fullard, J. H., Barclay, R. M. R., & Thomas, D.W. (1993). Echolocation in free-flying Atiu swiftlets (Aerodramus sawtrelli). Biotropica, 25, 334–339.Google Scholar
  39. Griffin, D. R. (1946). The mechanism by which bats produce supersonic sounds. Anatomical Record, 96, 519.PubMedGoogle Scholar
  40. Griffin, D. R. (1953). Acoustic orientation in the oilbird, Steatornis. Proceedings of the National Academy of Sciences of the USA, 39, 884–893.Google Scholar
  41. Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press.Google Scholar
  42. Griffin, D. R., & Galambos, R. (1941). The sensory basis of obstacle avoidance by flying bats. Journal of Experimental Zoology, 86, 481–506.Google Scholar
  43. Griffin, D. R., Novick, A., & Kornfield, M. (1958). The sensitivity of echolocation in the fruit bat Rousettus. Biological Bulletin, 155, 107–113.Google Scholar
  44. Griffiths, T. A. (1978). Modification of m. cricothyroideus and the larynx in the Mormoopidae, with reference to amplification of high-frequency pulses. Journal of Mammalogy, 59, 724–730.Google Scholar
  45. Griffiths, T. A. (1983). Comparative laryngeal anatomy of the big brown bat, Eptesicus fuscus, and the mustached bat, Pteronotus parnellii. Mammalia, 47, 377–394.Google Scholar
  46. Habersetzer, J., Schuller, G., & Neuweiler, G. (1984). Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, H. bicolor and H. speoris. Journal of Comparative Physiology A, 155, 559–567.Google Scholar
  47. Hartley, D. J., & Suthers, R. A. (1987). The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. Journal of the Acoustical Society of America, 82, 1892–1900.PubMedGoogle Scholar
  48. Hartley, D. J., & Suthers, R. A. (1988). The acoustics of the vocal tract in the horseshoe bat, Rhinolophus hildebrandti. Journal of the Acoustical Society of America, 84, 1201–1213.Google Scholar
  49. Hartley, D. J., & Suthers, R. A. (1989). The sound emission pattern of the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 85, 1348–1351.Google Scholar
  50. Hartley, D. J., & Suthers, R. A. (1990). Sonar pulse radiation and filtering in the mustached bat, Pteronotus parnellii rubiginosus. Journal of the Acoustical Society of America, 87, 2756–2772.Google Scholar
  51. Hartley, D. J., Campbell, K. A., & Suthers, R. A. (1989). The acoustic behavior of the fish-catching bat, Noctilio leporinus, during prey capture. Journal of the Acoustical Society of America, 86, 8–27.Google Scholar
  52. Herbert, H. (1985). Echolocation behavior in the megachiropteran bat, Rousettus aegyptiacus. Zeitschrift für Saugetierkunde—International Journal of Mammalian Biology, 50,141–152.Google Scholar
  53. Holland, R. A., & Waters, D. A. (2005). Echolocation signals and pinnae movement in the fruitbat Rousettus aegyptiacus. Acta Chiropterologica, 7, 83–90.Google Scholar
  54. Holland, R. A., Waters, D. A., & Rayner, J. M. V. (2004). Echolocation signal structure in the Megachiropteran bat Rousettus aegyptiacus Geoffroy 1810. Journal of Experimental Biology, 207, 4361–4369.PubMedGoogle Scholar
  55. Hollien, H., Hollien, P., Caldwell, D. K., & Caldwell, M. C. (1976). Sound production by the Atlantic bottlenose dolphin, Tursiops truncates. Cetology, 26, 1–7.Google Scholar
  56. Ibsen, S. D., Au, W. W. L., Nachtigall, P. E., Delong C. M., & Breese, M. (2007). Changes in signal parameters over time for an echolocating Atlantic bottlenose dolphin performing the same target discrimination task. Journal of the Acoustical Society of America, 112, 2446–2450.Google Scholar
  57. Isshiki, N. (1964). Regulatory mechanism of voice intensity variation. Journal of Speech and Hearing Research, 7, 17–29.PubMedGoogle Scholar
  58. Jones, G., & Teeling, E. C. (2006). The evolution of echolocation in bats. Trends in Ecology and Evolution, 21, 149–156.PubMedGoogle Scholar
  59. King, A. S. (1989). Functional anatomy of the syrinx. In A. S. King & J. McLelland (Eds.), Form and function in birds, Vol. 4 (pp. 105–220). New York: Academic Press.Google Scholar
  60. Kingston, T., & Rossiter, S. J. (2004). Harmonic-hopping in Wallacea’s bats. Nature, 429, 654–657.PubMedGoogle Scholar
  61. Kloepper, L. N., Nachtigall, P. E., & Breese, M. (2010). Change in echolocation signals with hearing loss in a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 129, 2233–2237.Google Scholar
  62. Kobler, J. B., Wilson, B. S., Henson, O. W., Jr., & Bishop, A. L. (1985). Echo intensity compensation by echolocating bats. Hearing Research, 20, 99–108.PubMedGoogle Scholar
  63. Koblitz, J. C., Stilz, P., & Schnitzler, H-U. (2010). Source levels of echolocation signals vary in correlation with wingbeat cycle in landing big brown bats (Eptesicus fuscus). Journal of Experimental Biology, 213, 3263–3268.PubMedGoogle Scholar
  64. Krysl, P., Cranford, T. W., Wiggins, S. M., & Hildebrand, J. (2005). Three-dimensional modeling of hearing in Delphinus delphis. Journal of the Acoustical Society of America, 120, 2328–2339.Google Scholar
  65. Kulzer, E. (1956). Flughunde erzeugen Orientierungslaute durch Zungenschlag. Naturwissenschaften, 43, 117–118.Google Scholar
  66. Kulzer, E. (1960). Physiologische und morphologische Untersuchungen über die Erzeugung der Orientierungslaute von Flughunden der Gattung Rousettus. Zeitschrift für vergleichende Physiologie, 43, 231–268.Google Scholar
  67. Ladefoged, P. (1968). Linguistic aspects of respiratory phenomena. Annals of the New York Academy of Sciences, 155, 141–151.Google Scholar
  68. Lammers, M. O., & Castellote, M. (2009). The beluga whale produces two pulses to form its sonar signal. Biological Letters, 5, 297–301.Google Scholar
  69. Lancaster, W. C., & Speakman, J. R. (2001). Variations in respiratory muscle activity during echolocation when stationary in three species of bat (Microchiroptera: Vespertilionidae). Journal of Experimental Biology, 204, 4185–4197.PubMedGoogle Scholar
  70. Lancaster, W. C., Henson, O. W., & Keating, A. W. (1995). Respiratory muscle activity in relation to vocalization in flying bats. Journal of Experimental Biology, 198, 175–191.PubMedGoogle Scholar
  71. Litchfield, C., Karol, R., & Greenberg, A. J. (1973). Compositional topography of melon lipids in the Atlantic bottlenose dolphin (Tursiops truncatus): Implications for echolocation. Marine Biology, 52, 285–290.Google Scholar
  72. Ma, J., Kobayasi, K., Zhang, S. Y., & Metzner, W. (2006). Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. Journal of Comparative Physiology A, 192, 535–550.Google Scholar
  73. Madsen, P. T., Johnson, M., Aguilar de Soto, N., Ximmer, W. M., &Tyack, P. (2005). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208, 181–194.PubMedGoogle Scholar
  74. Madsen, P. T., Wisniewska, D., & Breedholm, K. (2010). Single source sound production and dynamic beam formation in echolocating harbour porpoises (Phocoena phocoena). The Journal of Experimental Biology, 213, 3105–3110.PubMedGoogle Scholar
  75. Madsen, P. T., Lammers, M., Wisniewska, D., Beedholm, K. (2013). “Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side,” The Journal Experimental Biology, 216, 4091–4102.Google Scholar
  76. Matsumura, S. (1979). Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): Development of vocalizations. Journal of Mammalogy, 60, 76–84.Google Scholar
  77. Medway, L., & Pye, D. (1977). Echolocation and the systematics of swiftlets, In B. Stonehouse & C. Perrins (Eds.), Evolutionary biology (pp. 225–238). London: Macmillan. Google Scholar
  78. Mergell, P., Fitch, W. T., & Herzel, H. (1999). Modeling the role of nonhuman vocal membranes in phonation. Journal of the Acoustical Society of America, 105, 2020–2028.PubMedGoogle Scholar
  79. Metzner, W., & Schuller, G. (2010). Vocal control in echolocating bats. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 403–415). New York: Elsevier.Google Scholar
  80. Metzner, W., Zhang, S. Y., & Smotherman, M. (2002). Doppler-shift compensation behavior in horseshoe bats revisited: Auditory feedback controls both a decrease and an increase in call frequency. Journal of Experimental Biology, 205, 1607–1616.PubMedGoogle Scholar
  81. Möhres, F. P. (1953). Über die Ultraschallorientierung der Hufeisen-nasen (Chiroptera-Rhinolophinae). Zeitschrift für vergleichende Physiologie, 34,547–588.Google Scholar
  82. Möhres, F. P., & Kulzer, E. (1956). Über die Orientierung der Flughunde (Chiroptera-Pteropodidae). Zeitschrift für vergleichende Physiologie, 38, 1–29.Google Scholar
  83. Moss, C., & Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, Article 33.Google Scholar
  84. Müller, R. (2010). Numerical analysis of biosonar beamforming mechanisms and strategies in bats. Journal of the Acoustical Society of America, 128, 1414–1425.PubMedGoogle Scholar
  85. Nakamura, K., Yamada, T. K., & Shimazaki, K. (1998). Measurements of the nasal sacs of individual common dolphin, Delphinus delphis, and Dall’s porpoise, Phocoenoides dalli, by means of silicon reconstruction. Mammal Study, 23, 119–122.Google Scholar
  86. Neuweiler, G. (2003). Evolutionary aspects of bat echolocation. Journal of Comparative Physiology A, 189, 245–256.Google Scholar
  87. Norris, K. S. (1968). The evolution of acoustic mechanisms in odontocete cetaceans. In E. T. Drake (Ed.), Evolution and environment (pp. 297–324). New Haven, CT: Yale University Press.Google Scholar
  88. Norris, K. S., & Harvey, G. W. (1972). A theory of the function of the spermaceti organ of the sperm whale (Physeter catodon L.), NASA SP-26.Google Scholar
  89. Norris, K. S., Dormer K. J., Pegg, J., & Liese, G. T. (1971). The mechanism of sound production and air recycling in porpoises: A preliminary report. In Proceeding of the VIIIth Conference on Biology of Sonar Diving Mammals, Menlo Park, CA.Google Scholar
  90. Novick, A., & Griffin, D. R. (1961). Laryngeal mechanisms in bats for the production of orientation sounds. Journal of Experimental Zoology, 148, 125–145.PubMedGoogle Scholar
  91. Novick, A., & Vaisnys, J. R. (1964). Echolocation of flying insects by the bat, Chilonycteris parnellii. Biological Bulletin, 127, 478–488.Google Scholar
  92. Pierce, G. W. (1938). Experimental determination of supersonic notes emitted by bats. Journal of Mammalogy, 19, 454–455.Google Scholar
  93. Purves, P. E. (1967). Anatomical and experimental observations on the Cetacean sonar system. In R. G. Busnel (Ed.), Animal sonar systems: Biology and bionics (pp. 197–270). Jouy-en-Jouy, France : Laboratoire de Physiologie Acoustique.),Google Scholar
  94. Purves, P. E., & Pilleri, G. (1983). Echolocation in whales and dolphins. London: Academic Press.Google Scholar
  95. Pye, J. D. (1968). Animal sonar in air. Ultrasonics, 6, 32–38.PubMedGoogle Scholar
  96. Quay, W. B. (1970). Peripheral nervous system. In W. A. Wimsatt. (Ed.), Biology of bats, Vol. 3 (pp. 153–179). New York: Academic Press.Google Scholar
  97. Revel, J. P. (1962). The sarcoplasmic reticulum of the bat cricothyroid muscle. Journal of Cell Biology, 12, 571–588.Google Scholar
  98. Ridgway, S. H., & Carder, D. A. (1988). Nasal pressure and sound production in an echolocating white whale, Delphinapterus leucas. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: Processes and performances (pp. 53–60). New York: Plenum Press.Google Scholar
  99. Ridgway, S. H., Carder, D. A., Green, R. F., Gaunt, A. S., Gaunt, S. L. L., & Evans, W. E. (1980). Electromyographic and pressure events in the nasolaryngeal system of dolphins during sound production. In R. G. Busnel, & J. F. Fish (Eds.), Animal sonar systems (pp. 239–249). New York: Plenum Press.Google Scholar
  100. Roberts, L. H. (1972). Correlation of respiration and ultrasound production in rodents and bats. Journal of Zoology (London), 168, 439–449.Google Scholar
  101. Roberts, L. H. (1973). Cavity resonances in the production of orientation cries, Periodicum Biologorum, 75, 27–32.Google Scholar
  102. Roberts, L. H. (1975a). The functional anatomy of the rodent larynx in relation to audible and ultrasonic cry production. Zoological Journal of the Linnean Society, 56, 255–264.Google Scholar
  103. Roberts, L. H. (1975b). Confirmation of the echolocation pulse production mechanism of Rousettus. Journal of Mammalogy, 56, 218–220.PubMedGoogle Scholar
  104. Robin, M. H. A. (1881). Recherches anatomiques sur les mammiferes de l’ordre des Chiropteres. Ann Sci Nat (Zool), 12, 1–180.Google Scholar
  105. Rome, L. C. (2006). Design and function of superfast muscles: New insights into the physiology of skeletal muscle. Annual Review of Physiology, 68, 193–221.PubMedGoogle Scholar
  106. Rome, L. C., Syme, D. A., Hollingworth, S., Lindstedt, S. L., & Baylor, S. M. (1996). The whistle and the rattle: The design of sound producing muscles. Proceedings of the National Academy of Sciences of the U SA , 93, 8095–8100.Google Scholar
  107. Rübsamen, R., & Schuller, G. (1981). Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinum. I. The recurrent laryngeal nerve. Journal of Comparative Physiology, 143, 323–327.Google Scholar
  108. Schenkkan, E. J. (1973). On the comparative anatomy and function of the nasal tract in odontocetes (Mammalia, Cetaea). Bijdragen tot de Dierkunde, 43, 127–159.Google Scholar
  109. Schnitzler, H. U. (1968). Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Zeitschrift für vergleichende Physiologie, 57, 376–408.Google Scholar
  110. Schnitzler, H. U. (1970). Echoortung bei der fledermäus Chilonycteris rubiginosa. Zeitschrift für vergleichende Physiologie, 68, 25–38.Google Scholar
  111. Schnitzler, H. U. (1971). Fledermäuse im Windkanal. Journal of Comparative Physiology A, 73, 209–221.Google Scholar
  112. Schnitzler, H. U. (1972). Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A, 82, 79–92.Google Scholar
  113. Schnitzler, H. U. (1973). Die echoortung der fledermäuse und ihre horphysiologischen grundlagen. Fortschritte der Zoologie, 21, 136–189.Google Scholar
  114. Schuller, G., & Suga, N. (1976). Laryngeal mechanisms for the emission of CF-FM sounds in the Doppler-shift compensating bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology, 107, 253–262.Google Scholar
  115. Schuller, G., & Rübsamen, R. (1981). Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinam I. Superior laryngeal nerve (external motor branch). Journal of Comparative Physiology, 143, 317–321.Google Scholar
  116. Schuller, G., & Moss, C. (2004). Vocal control and acoustically guided behavior in bats. In J. A. Thomas, C. F. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 3–16). Chicago: University of Chicago Press.Google Scholar
  117. Smotherman, M. (2007). Sensory feedback control of mammalian vocalizations. Behavioural Brain Research, 182(2), 315–326.PubMedCentralPubMedGoogle Scholar
  118. Smotherman, M., & Guillen-Servent, A. (2008). Doppler-shift compensation behavior by Wagner’s mustached bat, Pteronotus personatus. Journal of the Acoustical Society of America, 123, 4331–4339.PubMedCentralPubMedGoogle Scholar
  119. Smyth, D. M. (1979). Studies on echolocation by the grey swiftlet Aerodramus spodiopygius. PhD thesis. Department of Zoology, James Cook University of North Queensland. Townsville, Queensland.Google Scholar
  120. Sprague, J. M. (1943). The hyoid region of placental mammals with special reference to the bats. American Journal of Anatomy, 72, 385–472.Google Scholar
  121. Strother, G. K., & Mogus, M. (1970). Acoustical beam patterns for bats: Some theoretical considerations. Journal of the Acoustical Society of America, 48, 1430–1432. PubMedGoogle Scholar
  122. Suga, N., Schlegel, P., Shimozawa, T., & Simmons, J. A. (1973). Orientation sounds evoked from echolocating bats by electrical stimulation of the brain. Journal of the Acoustical Society of America, 54, 793–797.PubMedGoogle Scholar
  123. Surlykke, A., & Moss, C. F. (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. Journal of the Acoustical Society of America, 108, 2419–2429.PubMedGoogle Scholar
  124. Surlykke, A., Miller, L., Møhl, B., Andersen, B., Christensen-Dalsgaard, J., & Jørgensen, M. (1993). Echolocation in two very small bats from Thailand: Craseonycteris thonglongyai and Myotis siligorensis. Behavioral Ecology and Sociobiology, 33, 1–12.Google Scholar
  125. Surlykke, A., Pedersen, S. B., & Jakobsen, L. (2009). Echolocating bats emit a highly directional sonar sound beam in the field. Proceedings of the Royal Society B: Biological Sciences, 276, 853–860.Google Scholar
  126. Suthers, R. A. (1988). The production of echolocation signals by bats and birds. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar processes and performance (pp. 23–45). New York: Plenum Press.Google Scholar
  127. Suthers, R. A. (1994). Variable asymmetry and resonance in the avian vocal tract: A structural basis for individually distinct vocalizations. Journal of Comparative Physiology A, 175, 457–466.Google Scholar
  128. Suthers, R. A., & Fattu, J. M. (1973). Mechanisms of sound production by echolocating bats. American Zoology, 13, 1215–1226.Google Scholar
  129. Suthers, R. A., & Fattu, J. M. (1982). Selective laryngeal neurotomy and the control of phonation by the echolocating bat, Eptesicus. Journal of Comparative Physiology A, 145, 529–537.Google Scholar
  130. Suthers, R. A., & Hector, D. H. (1982). Mechanism for the production of echolocating clicks by the grey swiftlet, Collocalia spodiopygia. Journal of Comparative Physiology A, 148, 457–470.Google Scholar
  131. Suthers, R. A., & Hector, D. H. (1985). The physiology of vocalization by the echolocating oilbird, Steatornis caripensis. Journal of Comparative Physiology A, 156, 243–266.Google Scholar
  132. Suthers, R. A., & Hector, D. H. (1988). Individual variation in vocal tract resonance may assist oilbirds in recognizing echoes of their own sonar clicks. In P. E. Nachtigall & P. W. B. Moore (eds.), Animal sonar: Processes and performance (pp. 87–91). New York: Plenum Press.Google Scholar
  133. Suthers, R. A., Thomas, S. P., & Suthers, B. J. (1972). Respiration, wing-beat and ultrasonic pulse emission in an echolocating bat. Journal of Experimental Biology, 56, 37–48.Google Scholar
  134. Suthers, R. A., & Hartley, D. J., & Wenstrup, J. J. (1988). The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandti. Journal of Comparative Physiology A, 162, 799–813.Google Scholar
  135. Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’Brian, J., & Murphy, W. J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580–584.Google Scholar
  136. Thomas, J., Stoermer, M., Bowers, C., Anderson, L., & Garver, A. (1988). Detection abilities and signal characteristics of echolocating false killer whales (Pseudorca crassidens). In P. E. Nachtigall & P. W. B. Moore (Eeds.), Animal sonar processing and performance (pp. 323–328). New York: Plenum Press.Google Scholar
  137. Thomas, J., Pawloski, J., & Au, W. W. L. (1990). Masked hearing abilities of a false killer whale (Pseudorca crassidens). In J. Thomas & R. Kastelien, (Eds.) Sensory abilities of ceta-ceans (pp. 395–404). New York: Plenum Press.Google Scholar
  138. Thomas, J. A., & Turl, C. W. (1990). Echolocation characteristics and range detection by a false killer whale (Pseudorca crassidens). In J. A. Thomas & R. A. Kastelein (Eds.), Sensory abilities of cetaceans (pp. 321–334). New York: Plenum Press.Google Scholar
  139. Thomassen, H. A., Djasim, U. M., & Povel, D. E. (2004). Echoclick design in swiftlets: Single as well as double clicks. Ibis, 146, 173–174.Google Scholar
  140. Tian, B., & Schnitzler, H. U. (1997). Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. Journal of the Acoustical Society of America, 101, 2347–2364.PubMedGoogle Scholar
  141. Titze, I. R. (1994). Principles of voice production. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  142. Urick, R. J. (1983). Principles of underwater sound. New York: McGraw–Hill.Google Scholar
  143. Vanderelst, D., De May, F., Peremans, H., Geipel, I., Kalko, E., & Firzlaff, U. (2010). What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS ONE, 5(8), e11893.PubMedCentralPubMedGoogle Scholar
  144. Vanderelst, D., Reijniers, J., Steckel, J., & Peremans, H. (2011). Information generated by the moving pinnae of Rhinolophus rouxi: Tuning of the morphology at different harmonics. PLoS ONE, 6(6), e20627.PubMedCentralPubMedGoogle Scholar
  145. Varanasi, U., & Malin, D. C. (1971). Unique lipids of the porpoise (Tursiops gilli): Differences in triacylglycerols and wax esters of acoustic (mandibular canal and melon) and bubble tissues. Biochemica Biophysica Acta, 231, 415–418.Google Scholar
  146. Wadsworth, J., & Moss, C. F. (2000). Vocal control of acoustic information for sonar discriminations by the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 107, 2265–2271.PubMedGoogle Scholar
  147. Waters, D. A., & Vollrath, C. (2003). Echolocation performance and call structure in the megachiropteran fruit-bat Rousettus aegyptiacus. Acta Chiropterologica, 5, 209–219.Google Scholar
  148. Wood, F. G. (1964). Discussion In W. Tavolga (Ed.), Marine Bio-Acoustics Vol II (pp. 321–334). Oxford: Pergamon Press.Google Scholar
  149. Wyke, B. D., & Kirchner, J. A. (1976). Neurology of the larynx. In R. Hinchcliffe & D. Harrison (Eds.), Scientific foundations of otolaryngology (pp. 546–574). London: W. Heinemann.Google Scholar
  150. Yovel, Y., Melcon, M. L., Franz, M. O., Denzinger, A., & Schnitzler, H-U. (2009). The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls. PLoS Computational Biology, 5, e1000400.PubMedCentralPubMedGoogle Scholar
  151. Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal localization by pointing off axis. Science, 327, 701–704.PubMedGoogle Scholar
  152. Yuen, M. M. L., Nachtigall, P. E., Breese, M., & Supin, A. Y. (2005). Behavioral and auditory evoked potential audiograms of a false killer whale Pseudorca crassidens. Journal of the Acoustical Society of America, 118, 2688–2695.Google Scholar
  153. Zhuang, Q., & Müller, R. (2006). Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Physical Review Letters, 97, 218701.Google Scholar
  154. Zhuang, Q., & Müller, R. (2007). Numerical study of the effect of the noseleaf on biosonar beamforming in a horseshoe bat. Physical Review E, 76, 051902.Google Scholar
  155. Zimmer, W. M. X., Johnson, M. P., Madsen, P. T., & Tyack, P. L. (2005). Echolocation clicks of free-ranging Cuvier’s beaked whales Ziphius cavirostris. Journal of the Acoustical Society of America, 117, 3919–3927.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKaneoheUSA
  2. 2.Department of Biology, School of MedicineIndiana UniversityBloomingtonUSA

Personalised recommendations