Skip to main content

Abstract

Natural product screening marries the search for new medicines with the search for new molecules from natural sources. The rationale for natural products as a source for new hits from which to develop new drugs will be discussed, and a brief overview of screening methods and techniques including how these are modified for the screening of crude natural product extracts will be described. This chapter will also provide a summary of the importance of natural products to drug discovery and development, the results from screening assays developed, and the natural products isolated utilizing these screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Efferth T, Fu YJ, Zu YG, Schwartz G, Konkimalla VSB, Wink M (2007) Molecular target-guided tumor therapy with natural products derived from traditional chinese medicine. Curr Med Chem 14:2024–2032

    CAS  PubMed  Google Scholar 

  2. Patwardhan B, Mashelkar R (2009) Traditional medicine-inspired approaches to drug discovery: can ayurveda show the way forward? Drug Discov Today 14:804–811

    PubMed  Google Scholar 

  3. Verdine GL (1996) The combinatorial chemistry of nature. Nature 384:11–13

    CAS  PubMed  Google Scholar 

  4. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    CAS  PubMed  Google Scholar 

  5. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    CAS  PubMed  Google Scholar 

  6. Grabowski K, Schneider G (2007) Properties and architecture of drugs and natural products revisited. Curr Chem Biol 1:115–127

    CAS  Google Scholar 

  7. Grabowski K, Baringhaus KH, Schneider G (2008) Scaffold diversity of natural products: inspiration for combinatorial library design. Nat Prod Rep 25:892–904

    CAS  PubMed  Google Scholar 

  8. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    CAS  PubMed  Google Scholar 

  9. Ortholand JY, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8:271–280

    CAS  PubMed  Google Scholar 

  10. Paterson I, Anderson EA (2005) Chemistry. The renaissance of natural products as drug candidates. Science 310:451–453

    PubMed  Google Scholar 

  11. Rouhi AM (2003) Rediscovering natural products. Chem Eng News 81:77–91

    Google Scholar 

  12. Gueritte F, Fahy J (2005) The vinca alkaloids. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 123–136

    Google Scholar 

  13. Noble RL, Beer CT, Cutts JH (1958) Role of chance observation in chemotherapy: Vinca rosea. Ann N Y Acad Sci 76:882–894

    CAS  PubMed  Google Scholar 

  14. Johnson IS, Wright HF, Svoboda GH (1959) Experimental basis for clinical evaluation of anti-tumor principles from Vinca rosea linn. J Lab Clin Med 54:830

    Google Scholar 

  15. Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S (2009) Natural compounds for cancer treatment and prevention. Pharmacol Res 59:365–378

    CAS  PubMed  Google Scholar 

  16. Himes RH, Kersey RN, Heller-Bettinger I, Samson FE (1976) Action of the vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro. Cancer Res 36:3798–3802

    CAS  PubMed  Google Scholar 

  17. Zavala F, Guenard D, Potier P (1978) Interaction of vinblastine analogues with tubulin. Experientia 34:1479–1479

    CAS  PubMed  Google Scholar 

  18. Jordan MA, Thrower D, Wilson L (1991) Mechanism of inhibition of cell proliferation by vinca alkaloids. Cancer Res 51:2212–2222

    CAS  PubMed  Google Scholar 

  19. Yun-San Yip A, Yuen-Yuen Ong E, Chow LW (2008) Vinflunine: clinical perspectives of an emerging anticancer agent. Expert Opin Investig Drugs 17:583–591

    CAS  PubMed  Google Scholar 

  20. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. Vi. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    CAS  PubMed  Google Scholar 

  21. Kinghorn AD (2008) Drug discovery from natural products. In: Lemke TL, Williams DA, Roche VF, Zito SW (eds) Foye’s principles of medicinal chemistry, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 12–25

    Google Scholar 

  22. Kingston DGI (2005) Taxol and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 89–122

    Google Scholar 

  23. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    CAS  PubMed  Google Scholar 

  24. Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3:755–766

    CAS  PubMed  Google Scholar 

  25. Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67:232–244

    CAS  PubMed  Google Scholar 

  26. Lee KH, Xiao Z (2005) Podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 71–88

    Google Scholar 

  27. Watt PM, Hickson ID (1994) Structure and function of type II DNA topoisomerases. Biochem J 303(Pt 3):681–695

    CAS  PubMed  Google Scholar 

  28. Hartmann JT, Lipp HP (2006) Camptothecin and podophyllotoxin derivatives: inhibitors of topoisomerase I and II - mechanisms of action, pharmacokinetics and toxicity profile. Drug Saf 29:209–230

    CAS  PubMed  Google Scholar 

  29. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate. J Am Chem Soc 88:3888–3890

    CAS  Google Scholar 

  30. Butler MS, Newman DJ (2008) Mother nature's gifts to diseases of man: the impact of natural products on anti-infective, anticholestemics and anticancer drug discovery. In: Petersen F, Amstutz R (eds) Natural compounds as drugs volume I. Birkhäuser Basel, Basel, Switzerland, pp 1–44

    Google Scholar 

  31. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    CAS  PubMed  Google Scholar 

  32. Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802

    CAS  PubMed  Google Scholar 

  33. Rahier NJ, Thomas CJ, Hecht S (2005) Camptothecin and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL

    Google Scholar 

  34. Arcamone FM (2005) Anthracyclines. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 299–320

    Google Scholar 

  35. Young RC, Ozols RF, Myers CE (1981) The anthracycline antineoplastic drugs. N Engl J Med 305:139–153

    CAS  PubMed  Google Scholar 

  36. Geffen DB, Man S (2002) New drugs for the treatment of cancer, 1990-2001. Isr Med Assoc J 4:1124–1131

    CAS  PubMed  Google Scholar 

  37. Hecht SM (2005) Bleomycin group antitumor agents. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL

    Google Scholar 

  38. Mauger AB, Lackner H (2005) The actinomycins. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 281–297

    Google Scholar 

  39. Remers WA (2005) The mitomycins. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 475–497

    Google Scholar 

  40. Hamann PR, Upeslacis J, Borders DB (2005) Enediynes. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 451–474

    Google Scholar 

  41. Carlson RW, Sikic BI, Turbow MM, Ballon SC (1983) Combination cisplatin, vinblastine, and bleomycin chemotherapy (pvb) for malignant germ-cell tumors of the ovary. J Clin Oncol 1:645–651

    CAS  PubMed  Google Scholar 

  42. Einhorn LH, Donohue J (1977) Cis-diamminedichloroplatinum, vinblastine, and bleomycin combination chemotherapy in disseminated testicular cancer. Ann Intern Med 87:293–298

    CAS  PubMed  Google Scholar 

  43. Li MC (1961) Management of choriocarcinoma and related tumors of uterus and testis. Med Clin North Am 45:661–676

    CAS  PubMed  Google Scholar 

  44. Li MC, Whitmore WF Jr, Golbey R, Grabstald H (1960) Effects of combined drug therapy on metastatic cancer of the testis. JAMA 174:1291–1299

    CAS  PubMed  Google Scholar 

  45. Tan CT, Dargeon HW, Burchenal JH (1959) The effect of actinomycin d on cancer in childhood. Pediatrics 24:544–561

    CAS  PubMed  Google Scholar 

  46. Doll DC, Weiss RB, Issell BF (1985) Mitomycin: ten years after approval for marketing. J Clin Oncol 3:276–286

    CAS  PubMed  Google Scholar 

  47. MacDonald JS, Woolley PV, Smythe T, Ueno W, Hoth D, Schein PS (1979) 5-Fluorouracil, adriamycin, and mitomycin-c (fam) combination chemotherapy in the treatment of advanced gastric cancer. Cancer 44:42–47

    CAS  PubMed  Google Scholar 

  48. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou HR, Upeslacis J, Shochat D, Mountain A, Flowers DA, Bernstein I (2002) Gemtuzumab ozogamicin, a potent and selective anti-cd33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47–58

    CAS  PubMed  Google Scholar 

  49. Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DG (1990) Ecteinascidins 729, 743, 745, 759a, 759b, and 770: potent antitumor agents from the caribbean tunicate Ecteinascidia turbinata. J Org Chem 55:4512–4515

    CAS  Google Scholar 

  50. Carter NJ, Keam SJ (2007) Trabectedin: a review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs 67:2257–2276

    CAS  PubMed  Google Scholar 

  51. Henriquez R, Faircloth G, Cuevas C (2005) Ecteinascidin 743 (et-743; yondelistm), aplidin, and kahalalide f. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC, Boca Raton, FL, pp 215–240

    Google Scholar 

  52. Baker DD, Chu M, Oza U, Rajgarhia V (2007) The value of natural products to future pharmaceutical discovery. Nat Prod Rep 24:1225–1244

    CAS  PubMed  Google Scholar 

  53. Kinghorn AD, Chin YW, Swanson SM (2009) Discovery of natural product anticancer agents from biodiverse organisms. Curr Opin Drug Discov Devel 12:189–196

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85

    CAS  PubMed  Google Scholar 

  55. Li J, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless fronier? Science 325:161–165

    PubMed  Google Scholar 

  56. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    CAS  PubMed  Google Scholar 

  57. Clement JA, Kitagaki J, Yang Y, Saucedo CJ, O’Keefe BR, Weissman AM, McKee TC, McMahon JB (2008) Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53. Bioorg Med Chem 16:10022–10028

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    CAS  PubMed  Google Scholar 

  59. Ojima I (2008) Modern natural products chemistry and drug discovery. J Med Chem 51:2587–2588

    CAS  PubMed  Google Scholar 

  60. Breinbauer R, Vetter IR, Waldmann H (2002) From protein domains to drug candidates-natural products as guiding principles in the design and synthesis of compound libraries. Angew Chem Int Ed Engl 41:2879–2890

    PubMed  Google Scholar 

  61. Molinski TF (2010) Nmr of natural products at the ‘nanomole-scale’. Nat Prod Rep 27:321–329

    CAS  PubMed  Google Scholar 

  62. Burke MD, Berger EM, Schreiber SL (2003) Generating diverse skeletons of small molecules combinatorially. Science 302:613–618

    CAS  PubMed  Google Scholar 

  63. Burke MD, Berger EM, Schreiber SL (2004) A synthesis strategy yielding skeletally diverse small molecules combinatorially. J Am Chem Soc 126:14095–14104

    CAS  PubMed  Google Scholar 

  64. Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed Engl 43:46–58

    PubMed  Google Scholar 

  65. Sittampalam GS, Kahl SD, Janzen WP (1997) High-throughput screening: advances in assay technologies. Curr Opin Chem Biol 1:384–391

    CAS  PubMed  Google Scholar 

  66. Bays N, Hill A, Kariv I (2009) A simplified scintillation proximity assay for fatty acid synthase activity: development and comparison with other Fas activity assays. J Biomol Screen 14:636–642

    CAS  PubMed  Google Scholar 

  67. Koresawa M, Okabe T (2004) High-throughput screening with quantitation of Atp consumption: a universal non-radioisotope, homogeneous assay for protein kinase. Assay Drug Dev Technol 2:153–160

    CAS  PubMed  Google Scholar 

  68. Cook N (1996) Scintillation proximity assay: a versatile high throughput screening tedchnology. Drug Discov Technol 1:287–294

    CAS  Google Scholar 

  69. Inglese J, Johnson R, Simenov A, Xia M, Zheng W, Austin C, Auld D (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 3:466–479

    CAS  PubMed  Google Scholar 

  70. Bailing L, Songjun L, Jie H (2004) Technological advances in high-throughput screening. Am J Pharmacogenomics 4:263–276

    Google Scholar 

  71. Beutler JA (2009) Natural products as a foundation for drug discovery. Curr Protoc Pharmacol 46:9.11.1–9.11.21

    Google Scholar 

  72. Burbaum JJ, Sigal NH (1997) New technologies for high-throughput screening. Curr Opin Chem Biol 1:72–78

    CAS  PubMed  Google Scholar 

  73. Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 4:445–451

    CAS  PubMed  Google Scholar 

  74. Huebsch N, Mooney DJ (2007) Fluorescent resonance energy transfer: a tool for probing molecular cell-biomaterial interactions in three dimensions. Biomaterials 28:2424–2437

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Piston D, Kremers G (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414

    CAS  PubMed  Google Scholar 

  76. Schmid J, Birbach A (2007) Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research. Thromb Haemost 97:378–384

    CAS  PubMed  Google Scholar 

  77. Sundberg SA (2000) High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr Opin Biotechnol 11:47–53

    CAS  PubMed  Google Scholar 

  78. Liu B, Li S, Hu J (2004) Technological advances in high-throughput screening. Am J Pharmacogenomics 4:263–276

    CAS  PubMed  Google Scholar 

  79. Hornbeck P (1991) Enzyme-linked immunosorbent assays. Curr Protoc Immunol Suppl 1:2.1.2–2.1.22

    Google Scholar 

  80. Zhang X, Bremer H (1995) Control of the Escherichia coli Rrnb p1 promoter strength by pGpp. J Biol Chem 270:11181–11189

    CAS  PubMed  Google Scholar 

  81. Roda A, Guardigli M, Pasini P, Mirasoli M (2003) Bioluminescence and chemiluminescence in drug screening. Anal Bioanal Chem 377:826–833

    CAS  PubMed  Google Scholar 

  82. Yarrow JC, Feng Y, Perlman ZE, Kirchhausen T, Mitchison TJ (2003) Phenotypic screening of small molecule libraries by high throughput cell imaging. Comb Chem High Throughput Screen 6:279–286

    CAS  PubMed  Google Scholar 

  83. Wölcke J, Ullmann D (2001) Miniaturized hts technologies – uhts. Drug Discov Today 6:637–646

    PubMed  Google Scholar 

  84. Ramm P (1999) Imaging systems in assay screening. Drug Discov Today 4:401–410

    CAS  PubMed  Google Scholar 

  85. Fan FWK (2007) Bioluminescent assays for high throughput screening. Assay Drug Dev Technol 5:127–136

    CAS  PubMed  Google Scholar 

  86. Alley M, Scudiero D, Monks A, Hursey M, Czerwinski M, Fine D, Abbott B, Mayo J, Shoemaker R, Boyd M (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture terazolium assay. Cancer Res 48:589–601

    CAS  PubMed  Google Scholar 

  87. Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and compare algorithm. J Natl Cancer Inst 81:1088–1092

    CAS  PubMed  Google Scholar 

  88. Scudiero D, Shoemaker R, Paull K, Monks A, Tierney S, Nofziger T, Currens M, Seniff D, Boyd M (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    CAS  PubMed  Google Scholar 

  89. Shoemaker R, Monks A, Alley M, Scudiero D, Fine D, McLemore T, Abbott B, Paull K, Mayo J, Boyd M (1988) Development of human tumor cell line panels for use in disease-oriented drug screening. Prog Clin Biol Res 276:265–286

    CAS  PubMed  Google Scholar 

  90. Shoemaker RH (2006) The nci60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823

    CAS  PubMed  Google Scholar 

  91. Boyd M, Farina C, Belfiore P, Gagliardi S, Kim J, Hayakawa Y, Beutler J, McKee T, Bowman B, Bowman E (2001) Discovery of a novel antitumor benzolactone enamide class the selectively inhibits mammalian vacuolar-type (H+)-ATPases. J Pharmacol Exp Ther 297:114–120

    CAS  PubMed  Google Scholar 

  92. An WF, Tolliday NJ (2009) Introduction: cell-based assays for high-throughput screening. Methods Mol Biol 486:1–12

    CAS  PubMed  Google Scholar 

  93. Henrich C, Robey R, Takada K, Bokesch H, Bates S, Shukla S, Ambudkar S, McMahon J, Gustafson K (2009) Botryllamides: natural product inhibitors of ABCG2. Chem Biol 4:637–647

    CAS  Google Scholar 

  94. Rabindran S, Ross D, Doyle L, Yang W, Greenberger L (2000) Funitremorgin c reverses multi-drug resistance in cells transfected with breast cancer resistance protein. Cancer Res 60:47–50

    CAS  PubMed  Google Scholar 

  95. Burbaum JJ (1998) Miniaturization technologies in hts: how fast, how small, how soon? Drug Discov Today 3:313–322

    Google Scholar 

  96. Mishra KPG, Ganju L, Sairam M, Banerjee PK, Sawhney RC (2008) A review of high throughput technology for the screening of natural products. Biomed Pharmacother 62:94–98

    CAS  PubMed  Google Scholar 

  97. Parniak M, Min K, Budihas S, LeGrise S, Beutler J (2003) A flourescence-based high-throughput screening assay for inhibitors of human deficiency virus-1 reverse transcriptase-associated ribonuclease H activity. Anal Biochem 322:33–39

    CAS  PubMed  Google Scholar 

  98. Budihas S, Groshkova I, Gaidamakov S, Wamiru A, Bona M, Parniak M, Crouch R, McMahon J, Beutler J, LeGrise S (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucleic Acids Res 33:1249–1256

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Dat N, KiHawn B, Wamiru A, McMahon J, LeGrise S, Bona M, Beutler J, Kim Y (2007) A dimeric lactone from Ardisia japonica with inhibitory activity for HIV-1 and HIV-2 ribonuclease H. J Nat Prod 70:839–841

    CAS  PubMed  Google Scholar 

  100. Bokesch H, Wamiru A, LeGrise S, Beutler J, McKee T, McMahon J (2008) HIV-1 ribonuclease H inhibitory phenolic glycosides from Eugenia hyemalis. J Nat Prod 71:1634–1636

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Takada K, Bermingham A, O’Keefe B, Wamiru A, Beutler J, LeGrise S, Lloyd J, Gustafson K, McMahon J (2007) An HIV inhibitory 1,3,4,5-tetragalloylapiitol from the african plant Hylodendron gabunensis. J Nat Prod 70:1647–1649

    CAS  PubMed  Google Scholar 

  102. Gulakowski R, McMahon J, Staley P, Moran R, Boyd M (1991) A semiautomated multiparameter approach for anti-HIV drug screening. J Virol Methods 33:87–100

    CAS  PubMed  Google Scholar 

  103. Josiah S (2009) Interpretation of uniform-well readouts. In: Clemons PEA (ed) Cell-based assays for high-throughput screening. Humana, New York, NY, pp 177–192

    Google Scholar 

  104. Fox S, Farr-Jones S, Sopchak L, Boggs A, Nicely H, Khoury R, Biros M (2006) High-throughput screening: update on practices and success. J Biomol Screen 11:864–869

    PubMed  Google Scholar 

  105. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    PubMed  Google Scholar 

  106. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525

    CAS  PubMed  Google Scholar 

  107. Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, Lerner CG, Chen J, Hajduk PJ (2004) Alarm NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127:217–224

    Google Scholar 

  108. Martin YC (2005) A bioavailability score. J Med Chem 48:3164–3170

    CAS  PubMed  Google Scholar 

  109. Taylor S, Evans F, Gafur M, Chodhury A (1981) Sapinotoxin D, a new phorbol ester from Sapium indicum. J Nat Prod 44:729–731

    CAS  Google Scholar 

  110. Claeson P, Goeransson U, Johansson S, Luijendijk T, Bohlin L (1998) Fractionation protocol for the isolation of polypeptides from plant biomass. J Nat Prod 61:77–81

    CAS  PubMed  Google Scholar 

  111. Baird WM, Boutwell RK (1971) Tumor-promoting activity of phorbol and four diesters of phorbol in mouse skin. Cancer Res 31:1074–1079

    CAS  PubMed  Google Scholar 

  112. Beutler JA, McKee TC, Fuller RW, Tischler M, Cardellina JH, Snader KM, McCloud TG, Boyd MR (1993) Frequent occurence of HIV-inhibitory sulphatd polysaccharides in marine invertebrates. Antiviral Chem Chemother 4:167–172

    Google Scholar 

  113. Lerch ML, Faulkner DJ (2001) Unusual polyoxygentaed sterols from a Philipines sponge Xestospongia sp. Tetrahedron 57:4091–4094

    Google Scholar 

  114. McKee TC, Cardellina JH II, Riccio R, D’Auria MV, Iorizzi M, Minale L, Moran RA, Gulakowski RJ, McMahon JB, Buckheit RW Jr, Snader KM, Boyd MR (1994) HIV-inhibitory natural products. 11. Comparative studies of sulfated sterols from marine invertebrates. J Med Chem 37:793–797

    Google Scholar 

  115. Whitson EL, Bugni TS, Chockalingam PS, Concepcion GP, Feng X, Jin G, Harper MK, Mangalindan GC, McDonald LA, Ireland CM (2009) Fibersterol sulfates from the Philipine spongeLissodendoryx (Acanthodoryx) fibrosa: sterol dimers that inhibit PKCzeta. J Org Chem 74:5902–5908

    Google Scholar 

  116. Shoichet BK (2006) Screening in a spirit haunted world. Drug Discov Today 11:607–615

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawnya C. McKee Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McKee, T.C., Van Wyk, A.W.W., Whitson, E.L. (2014). Natural Product Screening. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics