Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 3736 Accesses

Abstract

Recombinant immunotoxins contain a recombinant antibody and a protein toxin, capable of killing a cell after internalization and transport of the toxin to the cytosol. Growth factor fusion toxins, including the approved molecule denileukin diftitox, contain a growth factor such as interleukin-2 and truncated toxin. Recombinant immunotoxins furthest along in clinical development are BL22 (CAT-3888) and HA22 (CAT-8015 or moxetumomab pasudotox) targeting CD22 and LMB-2 targeting CD25. These agents have induced complete and partial responses in patients with chemoresistant hairy cell leukemia (HCL) and partial responses with other hematologic malignancies. Clinical development is continuing with these and other agents for different forms of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J Biol Chem 262:5908–5912

    CAS  PubMed  Google Scholar 

  2. Eiklid K, Olsnes S, Pihl A (1980) Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa cells. Exp Cell Res 126:321–326

    Article  CAS  PubMed  Google Scholar 

  3. Yamaizumi M, Mekada E, Uchida T, Okada Y (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15:245–250

    Article  CAS  PubMed  Google Scholar 

  4. Zamboni M, Brigotti M, Rambelli F, Montanaro L, Sperti S (1989) High pressure liquid chromatographic and fluorimetric methods for the determination of adenine released from ribosomes by ricin and gelonin. Biochem J 259:639–643

    CAS  PubMed  Google Scholar 

  5. Carroll SF, Collier RJ (1987) Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 262:8707–8711

    CAS  PubMed  Google Scholar 

  6. Van Ness BG, Howard JB, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 255:10717–10720

    PubMed  Google Scholar 

  7. Stirpe F, Sandvig K, Olsnes S, Pihl A (1982) Action of viscumin, a toxic lectin from mistletoe, on cells in culture. J Biol Chem 257:13271–13277

    CAS  PubMed  Google Scholar 

  8. Flavell DJ, Warnes S, Noss A, Flavell SU (1998) Host-mediated antibody-dependent cellular cytotoxicity contributes to the in vivo therapeutic efficacy of an anti-CD7-SAPORIN immunotoxin in a severe combined immunodeficient mouse model of human T-cell acute lymphoblastic leukemia. Cancer Res 58:5787–5794

    CAS  PubMed  Google Scholar 

  9. Uckun FM, Bellomy K, O’Neill K, Messinger Y, Johnson T, Chen CL (1999) Toxicity, biological activity, and pharmacokinetics of TXU (anti-CD7)-pokeweed antiviral protein in chimpanzees and adult patients infected with human immunodeficiency virus. J Pharmacol Exp Ther 291:1301–1307

    CAS  PubMed  Google Scholar 

  10. Bernhard SL, Better M, Fishwild DM et al (1994) Cysteine analogs of recombinant barley ribosome inactivating protein form antibody conjugates with enhanced stability and potency in vitro. Bioconjug Chem 5:126–132

    Article  CAS  PubMed  Google Scholar 

  11. Porro G, Bolognesi A, Caretto P et al (1993) In vitro and in vivo properties of an anti-CD5-momordin immunotoxin on normal and neoplastic T lymphocytes. Cancer Immunol Immunother 36:346–350

    Article  CAS  PubMed  Google Scholar 

  12. Bolognesi A, Tazzari PL, Tassi C, Gromo G, Gobbi M, Stirpe F (1992) A comparison of anti-lymphocyte immunotoxins containing different ribosome-inactivating proteins and antibodies. Clin Exp Immunol 89:341–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kreitman RJ (1997) Getting plant toxins to fuse. Leukemia Res 21:997–999

    Article  CAS  Google Scholar 

  14. Hwang J, FitzGerald DJ, Adhya S, Pastan I (1987) Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell 48:129–136

    Article  CAS  PubMed  Google Scholar 

  15. Allured VS, Collier RJ, Carroll SF, McKay DB (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0 Angstrom resolution. Proc Natl Acad Sci USA 83:1320–1324

    Article  CAS  PubMed  Google Scholar 

  16. Hessler JL, Kreitman RJ (1997) An early step in Pseudomonas exotoxin action is removal of the terminal lysine residue, which allows binding to the KDEL receptor. Biochemistry 36:14577–14582

    Article  CAS  PubMed  Google Scholar 

  17. Kounnas MZ, Morris RE, Thompson MR, FitzGerald DJ, Strickland DK, Saelinger CB (1992) The α2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 267:12420–12423

    CAS  PubMed  Google Scholar 

  18. Chiron MF, Fryling CM, FitzGerald DJ (1994) Cleavage of Pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J Biol Chem 269:18167–18176

    CAS  PubMed  Google Scholar 

  19. Fryling C, Ogata M, FitzGerald D (1992) Characterization of a cellular protease that cleaves Pseudomonas exotoxin. Infect Immun 60:497–502

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ogata M, Fryling CM, Pastan I, FitzGerald DJ (1992) Cell-mediated cleavage of Pseudomonas exotoxin between Arg279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. J Biol Chem 267:25396–25401

    CAS  PubMed  Google Scholar 

  21. McKee ML, FitzGerald DJ (1999) Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story. Biochemistry 38:16507–16513

    Article  CAS  PubMed  Google Scholar 

  22. Theuer C, Kasturi S, Pastan I (1994) Domain II of Pseudomonas exotoxin A arrests the transfer of translocating nascent chains into mammalian microsomes. Biochemistry 33:5894–5900

    Article  CAS  PubMed  Google Scholar 

  23. Theuer CP, Buchner J, FitzGerald D, Pastan I (1993) The N-terminal region of the 37-kDa translocated fragment of Pseudomonas exotoxin A aborts translocation by promoting its own export after microsomal membrane insertion. Proc Natl Acad Sci USA 90:7774–7778

    Article  CAS  PubMed  Google Scholar 

  24. Webb TR, Cross SH, McKie L et al (2008) Diphthamide modification of eEF2 requires a J-domain protein and is essential for normal development. J Cell Sci 121:3140–3145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li M, Dyda F, Benhar I, Pastan I, Davies DR (1995) The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin. Proc Natl Acad Sci USA 92:9308–9312

    Article  CAS  PubMed  Google Scholar 

  26. Li M, Dyda F, Benhar I, Pastan I, Davies DR (1996) Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc Natl Acad Sci USA 93:6902–6906

    Article  CAS  PubMed  Google Scholar 

  27. Han XY, Galloway DR (1995) Active site mutations of Pseudomonas aeruginosa exotoxin A – analysis of the His(440) residue. J Biol Chem 270:679–684

    Article  CAS  PubMed  Google Scholar 

  28. Brinkmann U, Brinkmann E, Gallo M, Pastan I (1995) Cloning and characterization of a cellular apoptosis susceptibility gene, the human homologue to the yeast chromosome segregation gene CSE1. Proc Natl Acad Sci USA 92:10427–10431

    Article  CAS  PubMed  Google Scholar 

  29. Keppler-Hafkemeyer A, Kreitman RJ, Pastan I (2000) Apoptosis induced by immunotoxins used in the treatment of hematologic malignancies. Int J Cancer 87:86–94

    Article  CAS  PubMed  Google Scholar 

  30. Decker T, Oelsner M, Kreitman RJ et al (2004) Induction of caspase-dependent programmed cell death in B-cell chronic lymphocytic leukemia cells by anti-CD22 immunotoxins. Blood 103:2718–2726

    Article  CAS  PubMed  Google Scholar 

  31. Decker T, Oelsner M, Kreitman RJ, Salvatore G, Wang QC, Pastan I, Peschel C, Licht T (2004) Induction of Caspase-Dependent Programmed Cell Death in B-Cell Chronic Lymphocytic Leukemia Cells by Anti-CD22 Immunotoxins. Blood 103:2718–2726

    Google Scholar 

  32. Rolf JM, Gaudin HM, Eidels L (1990) Localization of the diphtheria toxin receptor-binding domain to the carboxyl-terminal Mr 6000 region of the toxin. J Biol Chem 265:7331–7337

    CAS  PubMed  Google Scholar 

  33. Uchida T, Pappenheimer AM Jr, Harper AA (1972) Reconstitution of diphtheria toxin from two nontoxic cross-reacting mutant proteins. Science 175:901–903

    Article  CAS  PubMed  Google Scholar 

  34. Uchida T, Pappenheimer AM Jr, Greany R (1973) Diphtheria toxin and related proteins I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem 248:3838–3844

    CAS  PubMed  Google Scholar 

  35. Choe S, Bennett MJ, Fujii G et al (1992) The crystal structure of diphtheria toxin. Science 357:216–222

    CAS  Google Scholar 

  36. Williams DP, Wen Z, Watson RS, Boyd J, Strom TB, Murphy JR (1990) Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J Biol Chem 265:20673–20677

    CAS  PubMed  Google Scholar 

  37. Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E (1994) Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J 13:2322–2330

    CAS  PubMed  Google Scholar 

  38. vanderSpek J, Cassidy D, Genbauffe F, Huynh PD, Murphy JR (1994) An intact transmembrane helix 9 is essential for the efficient delivery of the diphtheria toxin catalytic domain to the cytosol of target cells. J Biol Chem 269:21455–21459

    CAS  PubMed  Google Scholar 

  39. Zhan H, Choe S, Huynh PD, Finkelstein A, Eisenberg D, Collier RJ (1994) Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies. Biochemistry 33:11254–11263

    Article  CAS  PubMed  Google Scholar 

  40. Cabiaux V, Mindell J, Collier RJ (1993) Membrane translocation and channel-forming activities of diphtheria toxin are blocked by replacing isoleucine 364 with lysine. Infect Immun 61:2200–2202

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Kaul P, Silverman J, Shen WH et al (1996) Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci 5:687–692

    Article  CAS  PubMed  Google Scholar 

  42. Papini E, Schiavo G, Tomasi M, Colombatti M, Rappuoli R, Montecucco C (1987) Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. Eur J Biochem 169:637–644

    Article  CAS  PubMed  Google Scholar 

  43. Moskaug JO, Stenmark H, Olsnes S (1991) Insertion of diphtheria toxin B-fragment into the plasma membrane at low pH. Characterization and topology of inserted regions. J Biol Chem 266:2652–2659

    CAS  PubMed  Google Scholar 

  44. Wilson BA, Blanke SR, Reich KA, Collier RJ (1994) Active-site mutations of diphtheria toxin. Tryptophan 50 is a major determinant of NAD affinity. J Biol Chem 269:23296–23301

    CAS  PubMed  Google Scholar 

  45. Bennett MJ, Eisenberg D (1994) Refined structure of monomeric diphtheria toxin at 2.3 A resolution. Protein Sci 3:1464–1475

    Article  CAS  PubMed  Google Scholar 

  46. Holbourn KP, Shone CC, Acharya KR (2006) A family of killer toxins – exploring the mechanism of ADP-ribosylating toxins. FEBS J 273:4579–4593

    Article  CAS  PubMed  Google Scholar 

  47. Thorburn A, Thorburn J, Frankel AE (2004) Induction of apoptosis by tumor cell-targeted toxins. Apoptosis 9:19–25

    Article  CAS  PubMed  Google Scholar 

  48. Kondo T, FitzGerald D, Chaudhary VK, Adhya S, Pastan I (1988) Activity of immunotoxins constructed with modified Pseudomonas exotoxin A lacking the cell recognition domain. J Biol Chem 263:9470–9475

    CAS  PubMed  Google Scholar 

  49. Siegall CB, Chaudhary VK, FitzGerald DJ, Pastan I (1989) Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin. J Biol Chem 264:14256–14261

    CAS  PubMed  Google Scholar 

  50. Kreitman RJ, Batra JK, Seetharam S, Chaudhary VK, FitzGerald DJ, Pastan I (1993) Single-chain immunotoxin fusions between anti-Tac and Pseudomonas exotoxin: relative importance of the two toxin disulfide bonds. Bioconjug Chem 4:112–120

    Article  CAS  PubMed  Google Scholar 

  51. Williams DP, Parker K, Bacha P et al (1987) Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng 1:493–498

    Article  CAS  PubMed  Google Scholar 

  52. Williams DP, Snider CE, Strom TB, Murphy JR (1990) Structure/function analysis of interleukin-2-toxin (DAB486-IL-2). Fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J Biol Chem 265:11885–11889

    CAS  PubMed  Google Scholar 

  53. Chaudhary VK, FitzGerald DJ, Pastan I (1991) A proper amino terminus of diphtheria toxin is important for cytotoxicity. Biochem Biophys Res Commun 180:545–551

    Article  CAS  PubMed  Google Scholar 

  54. Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339:394–397

    Article  CAS  PubMed  Google Scholar 

  55. Brinkmann U, Pai LH, FitzGerald DJ, Willingham M, Pastan I (1991) B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci USA 88:8616–8620

    Article  CAS  PubMed  Google Scholar 

  56. Brinkmann U, Reiter Y, Jung S, Lee B, Pastan I (1993) A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci USA 90:7538–7542

    Article  CAS  PubMed  Google Scholar 

  57. Reiter Y, Brinkmann U, Kreitman RJ, Jung S-H, Lee B, Pastan I (1994) Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33:5451–5459

    Article  CAS  PubMed  Google Scholar 

  58. Reiter Y, Kreitman RJ, Brinkmann U, Pastan I (1994) Cytotoxic and antitumor activity of a recombinant immunotoxin composed of disulfide-stabilized anti-Tac Fv fragment and truncated Pseudomonas exotoxin. Int J Cancer 58:142–149

    Article  CAS  PubMed  Google Scholar 

  59. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 polymerase to direct selective expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  60. Chaudhary VK, Xu Y, FitzGerald D, Adhya S, Pastan I (1988) Role of domain II of Pseudomonas exotoxin in the secretion into the periplasm and medium by Escherichia coli. Proc Natl Acad Sci USA 85:2939–2943

    Article  CAS  PubMed  Google Scholar 

  61. Bendel AE, Shao Y, Davies SM et al (1997) A recombinant fusion toxin targeted to the granulocyte-macrophage colony-stimulating factor receptor. Leuk Lymphoma 25:257

    CAS  PubMed  Google Scholar 

  62. Buchner J, Pastan I, Brinkmann U (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 205:263–270

    Article  CAS  PubMed  Google Scholar 

  63. Kreitman RJ, Pastan I (2000) Making fusion toxins to target leukemia and lymphoma. In: Francis GE, Delgado C (eds) Drug targeting, vol 25. Humana Press, Totowa, NJ, pp 215–226

    Chapter  Google Scholar 

  64. Kreitman RJ, Pastan I (1993) Purification and characterization of IL6-PE4E, a recombinant fusion of interleukin 6 with Pseudomonas exotoxin. Bioconjug Chem 4:581–585

    Article  CAS  PubMed  Google Scholar 

  65. Kreitman RJ, Pastan I (1997) Recombinant toxins containing human granulocyte-macrophage colony-stimulating factor and either Pseudomonas exotoxin or diphtheria toxin kill gastrointestinal cancer and leukemia cells. Blood 90:252–259

    CAS  PubMed  Google Scholar 

  66. Woo JH, Liu YY, Mathias A et al (2002) Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr Purif 25:270–282

    Article  CAS  PubMed  Google Scholar 

  67. Woo JH, Liu JS, Kang SH et al (2008) GMP production and characterization of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1) for phase I/II clinical trials. Protein Expr Purif 58:1–11

    Article  CAS  PubMed  Google Scholar 

  68. Foss F (2006) Clinical experience with denileukin diftitox (ONTAK). Semin Oncol 33:11–16

    Article  CAS  Google Scholar 

  69. Kuzel TM, Li S, Eklund J et al (2007) Phase II study of denileukin diftitox for previously treated indolent non-Hodgkin lymphoma: final results of E1497. Leuk Lymphoma 48:2397–2402

    Article  CAS  PubMed  Google Scholar 

  70. Frankel AE, Surendranathan A, Black JH, White A, Ganjoo K, Cripe LD (2006) Phase II clinical studies of denileukin diftitox diphtheria toxin fusion protein in patients with previously treated chronic lymphocytic leukemia. Cancer 106:2158–2164

    Article  CAS  PubMed  Google Scholar 

  71. Goldberg MR, Heimbrook DC, Russo P et al (1995) Phase I clinical study of recombinant oncotoxin TP40 in superficial bladder cancer. Clin Cancer Res 1:57–61

    CAS  PubMed  Google Scholar 

  72. Garland L, Gitlitz B, Ebbinghaus S et al (2005) Phase I trial of intravenous IL-4 Pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J Immunother 28:376–381

    Article  CAS  PubMed  Google Scholar 

  73. Kreitman RJ, Puri RK, Pastan I (1994) A circularly permuted recombinant interleukin 4 toxin with increased activity. Proc Natl Acad Sci USA 91:6889–6893

    Article  CAS  PubMed  Google Scholar 

  74. Kreitman RJ, Puri RK, Pastan I (1995) Increased antitumor activity of a circularly permuted interleukin 4-toxin in mice with interleukin 4 receptor-bearing human carcinoma. Cancer Res 55:3357–3363

    CAS  PubMed  Google Scholar 

  75. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK (2000) Intratumoral administration of a recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high grade glioma. Clin Cancer Res 6:2157–2165

    CAS  PubMed  Google Scholar 

  76. Vogelbaum MA, Sampson JH, Kunwar S et al (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 61:1031–1037, discussion 1037–1038

    Article  PubMed  Google Scholar 

  77. Kunwar S (2003) Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. In: Westphal M, Tonn JC, Ram Z (eds) Local therapies for glioma: present status and future developments. Springer, Wien, Austria, pp 105–111

    Chapter  Google Scholar 

  78. Kunwar S, Prados MD, Chang SM et al (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 25:837–844

    Article  CAS  PubMed  Google Scholar 

  79. Davey RT Jr, Boenning CM, Herpin BR et al (1994) Use of recombinant soluble CD4 Pseudomonas exotoxin, a novel immunotoxin, for treatment of persons infected with human immunodeficiency virus. J Infect Dis 170:1180–1188

    Article  PubMed  Google Scholar 

  80. Frankel AE, Ramage J, Latimer A et al (1999) High-level expression and purification of the recombinant diphtheria fusion toxin DTGM for PHASE I clinical trials. Protein Expr Purif 16:190–201

    Article  CAS  PubMed  Google Scholar 

  81. Hotchkiss CE, Hall PD, Cline JM et al (1999) Toxicology and pharmacokinetics of DTGM, a fusion toxin consisting of a truncated diphtheria toxin (DT388) linked to human granulocyte-macrophage colony-stimulating factor, in cynomolgus monkeys. Toxicol Appl Pharmacol 158:152–160

    Article  CAS  PubMed  Google Scholar 

  82. Frankel AE, Powell BL, Hall PD, Case LD, Kreitman RJ (2002) Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin Cancer Res 8:1004–1013

    CAS  PubMed  Google Scholar 

  83. Frankel A, McCubrey J, Miller MS et al (2000) Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with acute phase chronic myeloid leukemia. Leukemia 14:576–585

    Article  CAS  PubMed  Google Scholar 

  84. Urieto JO, Liu T, Black JH et al (2004) Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials. Protein Expr Purif 33:123–133

    Article  CAS  PubMed  Google Scholar 

  85. Frankel A, Liu JS, Rizzieri D, Hogge D (2008) Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma 49:543–553

    Article  CAS  PubMed  Google Scholar 

  86. Murphy JR, vanderSpek JC (1995) Targeting diphtheria toxin to growth factor receptors. Semin Cancer Biol 6:259–267

    Article  CAS  PubMed  Google Scholar 

  87. Kodaka T, Uchiyama T, Ishikawa T et al (1990) Interleukin-2 receptor β-chain (p70-75) expressed on leukemic cells from adult T cell leukemia patients. Jpn J Cancer Res 81:902–908

    Article  CAS  PubMed  Google Scholar 

  88. Yagura H, Tamaki T, Furitsu T et al (1990) Demonstration of high-affinity interleukin-2 receptors on B-chronic lymphocytic leukemia cells: functional and structural characterization. Blut 60:181–186

    Article  CAS  PubMed  Google Scholar 

  89. Kreitman RJ, Pastan I (1994) Recombinant single-chain immunotoxins against T and B cell leukemias. Leuk Lymphoma 13:1–10

    CAS  PubMed  Google Scholar 

  90. Robb RJ, Greene WC, Rusk CM (1984) Low and high affinity cellular receptors for interleukin 2. J Exp Med 160:1126–1146

    Article  CAS  PubMed  Google Scholar 

  91. Gazzola M, Collins NH, Tafuri A, Keever CA (1992) Recombinant interleukin 3 induces interleukin 2 receptor expression on early myeloid cells in normal human bone marrow. Exp Hematol 20:201–208

    CAS  PubMed  Google Scholar 

  92. Uchiyama TA, Broder S, Waldmann TA (1981) A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J Immunol 126:1393–1397

    CAS  PubMed  Google Scholar 

  93. Taniguchi T, Minami Y (1993) The IL2/IL-2 receptor system: a current overview. Cell 73:5–8

    Article  CAS  PubMed  Google Scholar 

  94. Kreitman RJ, Pastan I (1995) Targeting Pseudomonas exotoxin to hematologic malignancies. Semin Cancer Biol 6:297–306

    Article  CAS  PubMed  Google Scholar 

  95. Robbins DH, Margulies I, Stetler-Stevenson M, Kreitman RJ (2000) Hairy cell leukemia, a B-cell neoplasm which is particularly sensitive to the cytotoxic effect of anti-Tac(Fv)-PE38 (LMB-2). Clin Cancer Res 6:693–700

    CAS  PubMed  Google Scholar 

  96. Kreitman RJ, Bailon P, Chaudhary VK, FitzGerald DJP, Pastan I (1994) Recombinant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interleukin-2 receptor-expressing human carcinoma. Blood 83:426–434

    CAS  PubMed  Google Scholar 

  97. Kreitman RJ, Pastan I (1998) Accumulation of a recombinant immunotoxin in a tumor in vivo: fewer than 1000 molecules per cell are sufficient for complete responses. Cancer Res 58:968–975

    CAS  PubMed  Google Scholar 

  98. Kobayashi H, Kao CK, Kreitman RJ et al (2000) Pharmacokinetics of In-111- and I-125-labeled antiTac single-chain Fv recombinant immunotoxin. J Nucl Med 41:755–762

    CAS  PubMed  Google Scholar 

  99. Kreitman RJ, Wilson WH, White JD et al (2000) Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 18:1614–1636

    Google Scholar 

  100. Kreitman RJ, Wilson WH, Robbins D et al (1999) Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 94:3340–3348

    CAS  PubMed  Google Scholar 

  101. Onda M, Kreitman RJ, Vasmatzis G, Lee B, Pastan I (1999) Reduction of the nonspecific toxicity of anti-Tac(Fv)-PE38 by mutations in the framework regions of the Fv which lower the isoelectric point. J Immunol 163:6072–6077

    CAS  PubMed  Google Scholar 

  102. Onda M, Willingham M, Wang Q et al (2000) Inhibition of TNF alpha produced by Kupffer cells protects against the non-specific liver toxicity of immunotoxin anti-Tac(Fv)-PE38, LMB-2. J Immunol 165:7150–7156

    CAS  PubMed  Google Scholar 

  103. Zhang Y, Xiang L, Hassan R, Pastan I (2007) Immunotoxin and Taxol synergy results from a decrease in shed mesothelin levels in the extracellular space of tumors. Proc Natl Acad Sci USA 104:17099–17104

    Article  CAS  PubMed  Google Scholar 

  104. Crocker PR (2002) Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr Opin Struct Biol 12:609–615

    Article  CAS  PubMed  Google Scholar 

  105. Amlot PL, Stone MJ, Cunningham D et al (1993) A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 82:2624–2633

    CAS  PubMed  Google Scholar 

  106. Sausville EA, Headlee D, Stetler-Stevenson M et al (1995) Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood 85:3457–3465

    CAS  PubMed  Google Scholar 

  107. Senderowicz AM, Vitetta E, Headlee D et al (1997) Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med 126:882–885

    Article  CAS  PubMed  Google Scholar 

  108. Messmann RA, Vitetta ES, Headlee D et al (2000) A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylated ricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma [In Process Citation]. Clin Cancer Res 6:1302–1313

    CAS  PubMed  Google Scholar 

  109. Kreitman RJ, Hansen HJ, Jones AL, FitzGerald DJP, Goldenberg DM, Pastan I (1993) Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab' induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res 53:819–825

    CAS  PubMed  Google Scholar 

  110. Theuer CP, Kreitman RJ, FitzGerald DJ, Pastan I (1993) Immunotoxins made with a recombinant form of Pseudomonas exotoxin A that do not require proteolysis for activity. Cancer Res 53:340–347

    CAS  PubMed  Google Scholar 

  111. Mansfield E, Chiron MF, Amlot P, Pastan I, FitzGerald DJ (1997) Recombinant RFB4 single-chain immunotoxin that is cytotoxic towards CD22-positive cells. Biochem Soc Trans 25:709–714

    CAS  PubMed  Google Scholar 

  112. Mansfield E, Amlot P, Pastan I, FitzGerald DJ (1997) Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood 90:2020–2026

    CAS  PubMed  Google Scholar 

  113. Kreitman RJ, Wang QC, FitzGerald DJP, Pastan I (1999) Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4(dsFv)-PE38 at doses tolerated by Cynomolgus monkeys. Int J Cancer 81:148–155

    Article  CAS  PubMed  Google Scholar 

  114. Kreitman RJ, Margulies I, Stetler-Stevenson M, Wang QC, FitzGerald DJP, Pastan I (2000) Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) towards fresh malignant cells from patients with B-cell leukemias. Clin Cancer Res 6:1476–1487

    CAS  PubMed  Google Scholar 

  115. Kreitman RJ, Wilson WH, Bergeron K et al (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. New Engl J Med 345:241–247

    Article  CAS  PubMed  Google Scholar 

  116. Kreitman RJ, Squires DR, Stetler-Stevenson M et al (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 23:6719–6729

    Article  CAS  PubMed  Google Scholar 

  117. Matutes E, Wotherspoon A, Brito-Babapulle V, Catovsky D (2001) The natural history and clinico-pathological features of the variant form of hairy cell leukemia. Leukemia 15:184–186

    Article  CAS  PubMed  Google Scholar 

  118. Saven A, Burian C, Koziol JA, Piro LD (1998) Long-term follow-up of patients with hairy cell leukemia after cladribine treatment. Blood 92:1918–1926

    CAS  PubMed  Google Scholar 

  119. Kreitman RJ, Stetler-Stevenson M, Margulies I et al (2009) Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J Clin Oncol 27:2983–2990

    Article  CAS  PubMed  Google Scholar 

  120. Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I (2002) Improved cytotoxic activity towards cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res 8:995–1002

    CAS  PubMed  Google Scholar 

  121. Weldon JE, Xiang L, Chertov O et al (2009) A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 113:3792–3800

    Article  CAS  PubMed  Google Scholar 

  122. Onda M, Beers R, Xiang L, Nagata S, Wang QC, Pastan I (2008) An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc Nat Acad Sci USA 105:11311–11316

    Article  CAS  PubMed  Google Scholar 

  123. Hansen JK, Weldon JE, Xiang L, Beers R, Onda M, Pastan I (2010) A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice. J Immunother 33:297–304

    Article  CAS  PubMed  Google Scholar 

  124. Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H (2005) A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res 11:3879–3888

    Article  CAS  PubMed  Google Scholar 

  125. Callard RE, Smith CM, Worman C, Linch D, Cawley JC, Beverley PC (1981) Unusual phenotype and function of an expanded subpopulation of T cells in patients with haemopoietic disorders. Clin Exp Immunol 43:497–505

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Martin PJ, Hansen JA, Torok-Storb B et al (1988) Effects of treating marrow with a CD3-specific immunotoxin for prevention of acute graft-versus-host disease. Bone Marrow Transplant 3:437–444

    CAS  PubMed  Google Scholar 

  127. Thompson J, Hu H, Scharff J, Neville DM Jr (1995) An anti-CD3 single-chain immunotoxin with a truncated diphtheria toxin avoids inhibition by pre-existing antibodies in human blood. J Biol Chem 270:28037–28041

    Article  CAS  PubMed  Google Scholar 

  128. Thompson J, Stavrou S, Weetall M et al (2001) Improved binding of a bivalent single-chain immunotoxin results in increased efficacy for in vivo T-cell depletion. Protein Eng 14:1035–1041

    Article  CAS  PubMed  Google Scholar 

  129. Woo JH, Bour SH, Dang T et al (2008) Preclinical studies in rats and squirrel monkeys for safety evaluation of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1). Cancer Immunol Immunother 57:1225–1239

    Article  CAS  PubMed  Google Scholar 

  130. FitzGerald DJ, Padmanabhan R, Pastan I, Willingham MC (1983) Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 32:607–617

    Article  CAS  PubMed  Google Scholar 

  131. Chaudhary VK, FitzGerald DJ, Adhya S, Pastan I (1987) Activity of a recombinant fusion protein between transforming growth factor type α and Pseudomonas toxin. Proc Natl Acad Sci USA 84:4538–4542

    Article  CAS  PubMed  Google Scholar 

  132. Siegall CB, Y-h X, Chaudhary VK, Adhya S, FitzGerald D, Pastan I (1989) Cytotoxic activities of a fusion protein comprised of TGFα and Pseudomonas exotoxin. FASEB J 3:2647–2652

    CAS  PubMed  Google Scholar 

  133. Kreitman RJ, Chaudhary VK, Siegall CB, FitzGerald DJ, Pastan I (1992) Rational design of a chimeric toxin: an intramolecular location for the insertion of transforming growth factor-α within Pseudomonas exotoxin as a targeting ligand. Bioconjug Chem 3:58–62

    Article  CAS  PubMed  Google Scholar 

  134. Kreitman RJ, Siegall CB, Chaudhary VK, FitzGerald DJ, Pastan I (1992) Properties of chimeric toxins with two recognition domains: interleukin 6 and transforming growth factor α at different locations in Pseudomonas exotoxin. Bioconjug Chem 3:63–68

    Article  CAS  PubMed  Google Scholar 

  135. Sampson JH, Akabani G, Archer GE et al (2003) Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 65:27–35

    Article  PubMed  Google Scholar 

  136. Foss FM, Saleh MN, Krueger JG, Nichols JC, Murphy JR (1998) Diphtheria toxin fusion proteins. In: Frankel AE (ed) Clinical applications of immunotoxins. Springer, Berlin, pp 63–81

    Chapter  Google Scholar 

  137. Pai LH, Wittes R, Setser A, Willingham MC, Pastan I (1996) Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med 2:350–353

    Article  CAS  PubMed  Google Scholar 

  138. Posey JA, Khazaeli MB, Bookman MA et al (2002) A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res 8:3092–3099

    CAS  PubMed  Google Scholar 

  139. Pai-Scherf LH, Villa J, Pearson D et al (1999) Hepatotoxicity in cancer patients receiving erb-38, a recombinant immunotoxin that targets the erbB2 receptor. Clin Cancer Res 5:2311–2315

    CAS  PubMed  Google Scholar 

  140. Azemar M, Schmidt M, Arlt F et al (2000) Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit the in vitro growth of human head and neck cancer cells and cause rapid tumor regression in vivo. Int J Cancer 86:269–275

    Article  CAS  PubMed  Google Scholar 

  141. Azemar M, Djahansouzi S, Jager E et al (2003) Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2. Breast Cancer Res Treat 82:155–164

    Article  CAS  PubMed  Google Scholar 

  142. Kreitman RJ (1995) Circularly permuted Interleukin 4 retains proliferative and binding activity. Cytokine 7:311–318

    Article  CAS  PubMed  Google Scholar 

  143. Weber FW, Floeth F, Asher A et al (2003) Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. In: Westphal M, Tonn JC, Ram Z (eds) Local therapies for glioma: present status and future developments. Springer, Wien, Austria, pp 93–103

    Chapter  Google Scholar 

  144. Parney IF, Kunwar S, McDermott M et al (2005) Neuroradiographic changes following convection-enhanced delivery of the recombinant cytotoxin interleukin 13-PE38QQR for recurrent malignant glioma. J Neurosurg 102:267–275

    Article  CAS  PubMed  Google Scholar 

  145. Chang K, Pastan I (1996) Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci USA 93:136–140

    Article  CAS  PubMed  Google Scholar 

  146. Palumbo C, Bei R, Procopio A, Modesti A (2008) Molecular targets and targeted therapies for malignant mesothelioma. Curr Med Chem 15:855–867

    Article  CAS  PubMed  Google Scholar 

  147. Gubbels JA, Belisle J, Onda M et al (2006) Mesothelin-MUC16 binding is a high affinity. N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 5:50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Chang K, Pai LH, Pass H et al (1992) Monoclonal antibody K1 reacts with epithelial mesothelioma but not with lung adenocarcinoma. Am J Surg Pathol 16:259–268

    Article  CAS  PubMed  Google Scholar 

  149. Chang K, Pastan I, Willingham MC (1992) Frequent expression of the tumor antigen CAK1 in squamous-cell carcinomas. Int J Cancer 51:548–554

    Article  CAS  PubMed  Google Scholar 

  150. Kushitani K, Takeshima Y, Amatya VJ, Furonaka O, Sakatani A, Inai K (2007) Immunohistochemical marker panels for distinguishing between epithelioid mesothelioma and lung adenocarcinoma. Pathol Int 57:190–199

    Article  CAS  PubMed  Google Scholar 

  151. Argani P, Iacobuzio-Donahue C, Ryu B et al (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 7:3862–3868

    CAS  PubMed  Google Scholar 

  152. Ryu B, Jones J, Blades NJ et al (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res 62:819–826

    CAS  PubMed  Google Scholar 

  153. Hassan R, Wu C, Brechbiel MW, Margulies I, Kreitman RJ, Pastan I (1999) 111Indium-labeled Monoclonal antibody K1: biodistribution study in nude mice bearing a human carcinoma xenograft expressing mesothelin. Int J Cancer 80:559–563

    Article  CAS  PubMed  Google Scholar 

  154. Hassan R, Viner J, Wang QC, Kreitman RJ, Pastan I (2000) Anti-tumor activity of K1-LysPE38QQR, an immunotoxin targeting mesothelin, a cell-surface antigen overexpressed in ovarian cancer and malignant mesothelioma. J Immunother 23:473–479

    Article  CAS  PubMed  Google Scholar 

  155. Chowdhury PS, Chang K, Pastan I (1997) Isolation of anti-mesothelin antibodies from a phage display library. Mol Immunol 34:9–20

    Article  CAS  PubMed  Google Scholar 

  156. Chowdhury PS, Pastan I (1999) Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol 17:568–572

    Article  CAS  PubMed  Google Scholar 

  157. Chowdhury PS, Viner JL, Beers R, Pastan I (1998) Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc Natl Acad Sci USA 95:669–674

    Article  CAS  PubMed  Google Scholar 

  158. Chowdhury PS, Vasmatzis G, Lee B, Pastan I (1998) Improved stability and yield of a Fv-toxin fusion protein by computer design and protein engineering of the Fv. J Mol Biol 281:917–928

    Article  CAS  PubMed  Google Scholar 

  159. Pastan I, Hassan R, FitzGerald DJP, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6:559–565

    Article  CAS  PubMed  Google Scholar 

  160. Hassan R, Bullock S, Premkumar A et al (2007) Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 13:5144–5149

    Article  CAS  PubMed  Google Scholar 

  161. Kreitman RJ, Hassan R, FitzGerald DJ, Pastan I (2009) Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res 15:5274–5279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Zhang Y, Xiang L, Hassan R et al (2006) Synergistic anti-tumor activity of taxol and immunotoxin SS1P in tumor bearing mice. Clin Cancer Res 12:4695–4701

    Article  CAS  PubMed  Google Scholar 

  163. Hassan R, Broaddus VC, Wilson S, Liewehr DJ, Zhang J (2007) Anti-mesothelin immunotoxin SS1P in combination with gemcitabine results in increased activity against mesothelin-expressing tumor xenografts. Clin Cancer Res 13:7166–7171

    Article  CAS  PubMed  Google Scholar 

  164. Onda M, Nagata S, Fitzgerald DJ et al (2006) Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J Immunol 177:8822–8834

    CAS  PubMed  Google Scholar 

  165. Roscoe DM, Jung SH, Benhar I, Pai L, Lee BK, Pastan I (1994) Primate antibody response to immunotoxin: serological and computer-aided analysis of epitopes on a truncated form of Pseudomonas exotoxin. Infect Immun 62:5055–5065

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Roscoe DM, Pai LH, Pastan I (1997) Identification of epitopes on a mutant form of Pseudomonas exotoxin using serum from humans treated with Pseudomonas exotoxin containing immunotoxins. Eur J Immunol 27:1459–1468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work regarding LMB-2, BL22, HA22, and SS1P was in part supported by the intramural program, NCI. Clinical development regarding BL22 and HA22 was in part funded by MedImmune, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Kreitman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kreitman, R.J. (2014). Recombinant Immunotoxins. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics