Advertisement

Therapeutic Cancer Vaccines: An Emerging Approach to Cancer Treatment

  • Ravi A. Madan
  • Theresa A. Ferrara
  • James L. Gulley
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

In the late 1990s, monoclonal antibodies and targeted molecular inhibitors revolutionized treatment options for patients with cancer. Since their development, outcomes for patients with chronic lymphocytic leukemia, non-Hodgkin’s lymphoma, and Her-2+ breast cancer, among others, have significantly improved. While these anticancer agents continue to evolve, therapeutic cancer vaccines could be the next major therapeutic advance for cancer patients. Immunotherapy is already an accepted treatment for some cancers. BCG is a standard treatment for localized bladder cancer, while interferon alpha and interleukin-2 (IL-2) are used to treat melanoma and renal cell cancer. These nonspecific types of immunotherapy induce a broad immunologic response that may have an antitumor effect in a minority of patients. However, therapeutic cancer vaccines that can induce a specific, targeted antitumor immune response are currently in clinical development. Therapeutic cancer vaccines in metastatic prostate cancer have demonstrated overall survival advantages relative to placebo in multiple phase II and III trials, and there are compelling data for the clinical benefit of therapeutic cancer vaccines in other cancer types. Additional strategies are being investigated that employ combinations of vaccines and standard therapeutics, including hormonal therapy, radiation, and chemotherapy, in an effort to optimize the effects of vaccines.

Keywords

Therapeutic vaccine Immunotherapy Combination therapy Clinical trials 

References

  1. 1.
    Tanaka K, Tanahashi N, Tsurumi C, Yokota KY, Shimbara N (1997) Proteasomes and antigen processing. Adv Immunol 64:1–38PubMedGoogle Scholar
  2. 2.
    Hammer GE, Kanaseki T, Shastri N (2007) The final touches make perfect the peptide-MHC class I repertoire. Immunity 26(4):397–406PubMedGoogle Scholar
  3. 3.
    Houghton AN (1994) Cancer antigens: immune recognition of self and altered self. J Exp Med 180(1):1–4PubMedGoogle Scholar
  4. 4.
    Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMedGoogle Scholar
  5. 5.
    Oesterling JE (1991) Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol 145(5):907–923PubMedGoogle Scholar
  6. 6.
    Madan RA, Gulley JL, Arlen PM (2006) PSA-based vaccines for the treatment of prostate cancer. Expert Rev Vaccines 5(2):199–209PubMedGoogle Scholar
  7. 7.
    Veeramani S, Yuan TC, Chen SJ et al (2005) Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr Relat Cancer 12(4):805–822PubMedGoogle Scholar
  8. 8.
    Vihko P, Virkkunen P, Henttu P, Roiko K, Solin T, Huhtala ML (1988) Molecular cloning and sequence analysis of cDNA encoding human prostatic acid phosphatase. FEBS Lett 236(2):275–281PubMedGoogle Scholar
  9. 9.
    Karsten U, von Mensdorff-Pouilly S, Goletz S (2005) What makes MUC1 a tumor antigen? Tumour Biol 26(4):217–220PubMedGoogle Scholar
  10. 10.
    Wei X, Xu H, Kufe D (2005) Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7(2):167–178PubMedGoogle Scholar
  11. 11.
    Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D (2003) MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther 2(6):702–706PubMedGoogle Scholar
  12. 12.
    Aquino A, Prete SP, Greiner JW et al (1998) Effect of the combined treatment with 5-fluorouracil, gamma-interferon or folinic acid on carcinoembryonic antigen expression in colon cancer cells. Clin Cancer Res 4(10):2473–2481PubMedGoogle Scholar
  13. 13.
    Wei X, Xu H, Kufe D (2006) MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 21(2):295–305PubMedGoogle Scholar
  14. 14.
    Hiltbold EM, Alter MD, Ciborowski P, Finn OJ (1999) Presentation of MUC1 tumor antigen by class I MHC and CTL function correlate with the glycosylation state of the protein taken up by dendritic cells. Cell Immunol 194(2):143–149PubMedGoogle Scholar
  15. 15.
    Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP (1989) Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57(2):327–334PubMedGoogle Scholar
  16. 16.
    Robbins PF, Eggensperger D, Qi CF, Schlom J (1993) Definition of the expression of the human carcinoembryonic antigen and non-specific cross-reacting antigen in human breast and lung carcinomas. Int J Cancer 53(6):892–897PubMedGoogle Scholar
  17. 17.
    Tendler A, Kaufman HL, Kadish AS (2000) Increased carcinoembryonic antigen expression in cervical intraepithelial neoplasia grade 3 and in cervical squamous cell carcinoma. Hum Pathol 31(11):1357–1362PubMedGoogle Scholar
  18. 18.
    Ilantzis C, DeMarte L, Screaton RA, Stanners CP (2002) Deregulated expression of the human tumor marker CEA and CEA family member CEACAM6 disrupts tissue architecture and blocks colonocyte differentiation. Neoplasia 4(2):151–163PubMedCentralPubMedGoogle Scholar
  19. 19.
    Hostetter RB, Campbell DE, Chi KF et al (1990) Carcinoembryonic antigen enhances metastatic potential of human colorectal carcinoma. Arch Surg 125(3):300–304PubMedGoogle Scholar
  20. 20.
    Minami S, Furui J, Kanematsu T (2001) Role of carcinoembryonic antigen in the progression of colon cancer cells that express carbohydrate antigen. Cancer Res 61(6):2732–2735PubMedGoogle Scholar
  21. 21.
    Kalejs M, Erenpreisa J (2005) Cancer/testis antigens and gametogenesis: a review and “brain-storming” session. Cancer Cell Int 5(1):4PubMedCentralPubMedGoogle Scholar
  22. 22.
    Zendman AJ, Ruiter DJ, Van Muijen GN (2003) Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 194(3):272–288PubMedGoogle Scholar
  23. 23.
    Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5(8):615–625PubMedGoogle Scholar
  24. 24.
    Ghafouri-Fard S, Modarressi MH (2009) Cancer-testis antigens: potential targets for cancer immunotherapy. Arch Iran Med 12(4):395–404PubMedGoogle Scholar
  25. 25.
    Caballero OL, Chen YT (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 100(11):2014–2021PubMedGoogle Scholar
  26. 26.
    Kim J, Reber HA, Hines OJ et al (2006) The clinical significance of MAGEA3 expression in pancreatic cancer. Int J Cancer 118(9):2269–2275PubMedGoogle Scholar
  27. 27.
    Riener MO, Wild PJ, Soll C et al (2009) Frequent expression of the novel cancer testis antigen MAGE-C2/CT-10 in hepatocellular carcinoma. Int J Cancer 124(2):352–357PubMedGoogle Scholar
  28. 28.
    Velazquez EF, Jungbluth AA, Yancovitz M et al (2007) Expression of the cancer/testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)-correlation with prognostic factors. Cancer Immun 7:11PubMedGoogle Scholar
  29. 29.
    Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12):4328–4337PubMedGoogle Scholar
  30. 30.
    Gulley JL, Arlen PM, Bastian A et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(9):3353–3362PubMedGoogle Scholar
  31. 31.
    Celis E (2007) Overlapping human leukocyte antigen class I/II binding peptide vaccine for the treatment of patients with stage IV melanoma: evidence of systemic immune dysfunction. Cancer 110(1):203–214PubMedGoogle Scholar
  32. 32.
    Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208PubMedGoogle Scholar
  33. 33.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedCentralPubMedGoogle Scholar
  34. 34.
    Ward JE, McNeel DG (2007) GVAX: an allogeneic, whole-cell, GM-CSF-secreting cellular immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther 7(12):1893–1902PubMedGoogle Scholar
  35. 35.
    Essajee S, Kaufman HL (2004) Poxvirus vaccines for cancer and HIV therapy. Expert Opin Biol Ther 4(4):575–588PubMedGoogle Scholar
  36. 36.
    Hodge JW, Grosenbach DW, Rad AN, Giuliano M, Sabzevari H, Schlom J (2001) Enhancing the potency of peptide-pulsed antigen presenting cells by vector-driven hyperexpression of a triad of costimulatory molecules. Vaccine 19(25–26):3552–3567PubMedGoogle Scholar
  37. 37.
    Zhu M, Terasawa H, Gulley J et al (2001) Enhanced activation of human T cells via avipox vector-mediated hyperexpression of a triad of costimulatory molecules in human dendritic cells. Cancer Res 61(9):3725–3734PubMedGoogle Scholar
  38. 38.
    Palena C, Zhu M, Schlom J, Tsang KY (2004) Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection: an alternative source of efficient antigen-presenting cells. Blood 104(1):192–199PubMedGoogle Scholar
  39. 39.
    Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 93(21):11341–11348PubMedGoogle Scholar
  40. 40.
    Madan RA, Arlen PM, Gulley JL (2007) PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in carcinoma. Expert Opin Biol Ther 7(4):543–554PubMedGoogle Scholar
  41. 41.
    Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL (2009) Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs 18(7):1001–1011PubMedCentralPubMedGoogle Scholar
  42. 42.
    Rini BI (2002) Technology evaluation: APC-8015, Dendreon. Curr Opin Mol Ther 4(1):76–79PubMedGoogle Scholar
  43. 43.
    Patel PH, Kockler DR (2008) Sipuleucel-T: a vaccine for metastatic, asymptomatic, androgen-independent prostate cancer. Ann Pharmacother 42(1):91–98PubMedGoogle Scholar
  44. 44.
    Stevenson GT, Stevenson FK (1975) Antibody to a molecularly-defined antigen confined to a tumour cell surface. Nature 254(5502):714–716PubMedGoogle Scholar
  45. 45.
    Baskar S, Kobrin CB, Kwak LW (2004) Autologous lymphoma vaccines induce human T cell responses against multiple, unique epitopes. J Clin Invest 113(10):1498–1510PubMedCentralPubMedGoogle Scholar
  46. 46.
    Bendandi M (2001) Role of anti-idiotype vaccines in the modern treatment of human follicular lymphoma. Expert Rev Anticancer Ther 1(1):65–72PubMedGoogle Scholar
  47. 47.
    Small EJ, Schellhammer PF, Higano CS et al (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094PubMedGoogle Scholar
  48. 48.
    Schellhammer P, Higano C, Berger E et al (2009) AUA late-breaking science forum: a randomized, double-blind, placebo-controlled, multi-center, phase III trial of sipuleucel-T in men with metastatic, androgen independent prostatic adenocarcinoma (AIPC) [abstract]. January 2010. Available at: http://www.aua2009.org/program/lbsciforum.asp
  49. 49.
    Dendreon submits Provenge to FDA. December 2009. Available at: http://seattle.bizjournals.com/seattle/stories/2009/11/02/daily4.html
  50. 50.
    Kantoff P, Schuetz T, Blumenstein B et al (2010) Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105PubMedGoogle Scholar
  51. 51.
    Gulley JL, Arlen PM, Madan RA et al (2010) Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 59:663–674PubMedCentralPubMedGoogle Scholar
  52. 52.
    PROSTVAC: therapeutic vaccine candidate for the treatment of advanced prostate cancer. December 2009. Available at: http://www.bavarian-nordic.com/pipeline/prostvac.aspx
  53. 53.
    Higano CS, Corman JM, Smith DC et al (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113(5):975–984PubMedGoogle Scholar
  54. 54.
    GVAX immunotherapy for prostate cancer. December 2009. Available at: http://www.cellgenesys.com/view.cfm/20/GVAX-Immunotherapy-for-Prostate-Cancer
  55. 55.
    Madan RA, Mohebtash M, Schlom J, Gulley JL (2010) Therapeutic vaccines in metastatic castration-resistant prostate cancer: principles in clinical trial design. Expert Opin Biol Ther 10:19–28PubMedGoogle Scholar
  56. 56.
    Small E, Demkow T, Gerritsen W et al (2009) A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC) [abstract]. Genitourinary Cancers Symposium, Abstract # 7Google Scholar
  57. 57.
    Halabi S, Small EJ, Kantoff PW et al (2003) Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J Clin Oncol 21(7):1232–1237PubMedGoogle Scholar
  58. 58.
    Higano C, Saad F, Somer B et al (2009) A phase III trial of GVAX immunotherapy for prostate cancer versus docetaxel plus prednisone in asymptomatic, castration-resistant prostate cancer (CRPC) [abstract]. Genitourinary Cancers Symposium, Abstract # LBA150Google Scholar
  59. 59.
    Freedman A, Neelapu SS, Nichols C et al (2009) Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J Clin Oncol 27(18):3036–3043PubMedGoogle Scholar
  60. 60.
    Levy R, Tobertson M, Leonard J, Vose J, Denney D (2008) Results of a phase 3 trial evaluating safety and efficacy of specific immunotherapy, recombinant idiotype (ID) conjugated to KLH (ID-KLH) with GM-CSF, compared to non-specific immunotherapy, KLH with GM-CSF, in patients with follicular non-Hodgkin's lymphoma (fNHL) [abstract]. Ann Oncol 19(S4):057Google Scholar
  61. 61.
    Schuster S, Neelapu S, Gause B et al (2009) Idiotype vaccine therapy (BiovaxID) in follicular lymphoma in first complete remission: phase III clinical trial results [abstract]. J Clin Oncol 27(18S):2Google Scholar
  62. 62.
    Bendandi M (2009) Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat Rev Cancer 9(9):675–681PubMedGoogle Scholar
  63. 63.
    Butts C, Murray N, Maksymiuk A et al (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23(27):6674–6681PubMedGoogle Scholar
  64. 64.
    Butts C, Maksymiuk A, Goss G et al (2007) A multi-centre phase IIB randomized controlled study of BLP25 liposome vaccine (L-BLP25 or Stimuvax) for active specific immunotherapy of non-small cell lung cancer (NSCLC): updated survival analysis: B1-01 [abstract]. J Thorac Oncol 2(8):S332–S333Google Scholar
  65. 65.
    Cancer treatment centers of america. stimulating targeted antigenic response to NSCLC. December 2009. Available at: http://www.cancercenter.com/clinical-trials/93.cfm
  66. 66.
    Merck KGaA starts Stimuvax phase III study INSPIRE in Asian patients with advanced NSCLC. December 2009. Available at: http://www.fiercebiotech.com/press-releases/merck-kgaa-starts-stimuvax-phase-iii-study-inspire-asian-patients-advanced-nsclc
  67. 67.
    Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350(4):351–360PubMedGoogle Scholar
  68. 68.
    Lens M (2008) The role of vaccine therapy in the treatment of melanoma. Expert Opin Biol Ther 8(3):315–323PubMedGoogle Scholar
  69. 69.
    Morton DL, Hsueh EC, Essner R et al (2002) Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 236(4):438–448, discussion 448–449Google Scholar
  70. 70.
    Hsueh EC, Essner R, Foshag LJ et al (2002) Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 20(23):4549–4554PubMedGoogle Scholar
  71. 71.
    Sondak VK, Sosman JA (2003) Results of clinical trials with an allogenic melanoma tumor cell lysate vaccine: melacine. Semin Cancer Biol 13(6):409–415PubMedGoogle Scholar
  72. 72.
    Morton DL (2004) Immune response to postsurgical adjuvant active immunotherapy with Canvaxin polyvalent cancer vaccine: correlations with clinical course of patients with metastatic melanoma. Dev Biol (Basel) 116:209–217, discussion 229–236Google Scholar
  73. 73.
    Thomson TM, Real FX, Murakami S, Cordon-Cardo C, Old LJ, Houghton AN (1988) Differentiation antigens of melanocytes and melanoma: analysis of melanosome and cell surface markers of human pigmented cells with monoclonal antibodies. J Invest Dermatol 90(4):459–466PubMedGoogle Scholar
  74. 74.
    Kammula US, Lee KH, Riker AI et al (1999) Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol 163(12):6867–6875PubMedGoogle Scholar
  75. 75.
    Riker A, Cormier J, Panelli M et al (1999) Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126(2):112–120PubMedGoogle Scholar
  76. 76.
    Schwartzentruber D, Lawson D, Richards J et al (2009) A phase III multi-institutional randomized study of immunization with the gp, 100: 209–217(210M) peptide followed by high-dose IL-2 compared with high-dose IL-2 alone in patients with metastatic melanoma [abstract]. J Clin Oncol 27(18S), CRA9011Google Scholar
  77. 77.
    Terando AM, Faries MB, Morton DL (2007) Vaccine therapy for melanoma: current status and future directions. Vaccine 25(Suppl 2):B4–16PubMedGoogle Scholar
  78. 78.
    Kirkwood JM, Ibrahim JG, Sosman JA et al (2001) High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol 19(9):2370–2380PubMedGoogle Scholar
  79. 79.
    Ozoren N, El-Deiry WS (2003) Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13(2):135–147PubMedGoogle Scholar
  80. 80.
    Quarmby S, Hunter RD, Kumar S (2000) Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer Res 20(5B):3375–3381PubMedGoogle Scholar
  81. 81.
    Friedman EJ (2002) Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des 8(19):1765–1780PubMedGoogle Scholar
  82. 82.
    Chakraborty M, Abrams SI, Camphausen K et al (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347PubMedGoogle Scholar
  83. 83.
    Mercader M, Bodner BK, Moser MT et al (2001) T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci USA 98(25):14565–14570PubMedGoogle Scholar
  84. 84.
    Aragon-Ching JB, Williams KM, Gulley JL (2007) Impact of androgen-deprivation therapy on the immune system: implications for combination therapy of prostate cancer. Front Biosci 12:4957–4971PubMedGoogle Scholar
  85. 85.
    Goldberg GL, Sutherland JS, Hammet MV et al (2005) Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80(11):1604–1613PubMedGoogle Scholar
  86. 86.
    Drake CG, Doody AD, Mihalyo MA et al (2005) Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell 7(3):239–249PubMedCentralPubMedGoogle Scholar
  87. 87.
    Sutherland JS, Goldberg GL, Hammett MV et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175(4):2741–2753PubMedGoogle Scholar
  88. 88.
    Wang J, Zhang Q, Jin S et al (2009) Immoderate inhibition of estrogen by anastrozole enhances the severity of experimental polyarthritis. Exp Gerontol 44(6–7):398–405PubMedGoogle Scholar
  89. 89.
    Arlen PM, Gulley JL, Todd N et al (2005) Antiandrogen, vaccine and combination therapy in patients with nonmetastatic hormone refractory prostate cancer. J Urol 174(2):539–546PubMedGoogle Scholar
  90. 90.
    Madan RA, Gulley JL, Schlom J et al (2008) Analysis of overall survival in patients with nonmetastatic castration-resistant prostate cancer treated with vaccine, nilutamide, and combination therapy. Clin Cancer Res 14(14):4526–4531PubMedCentralPubMedGoogle Scholar
  91. 91.
    AbdAlla EE, Blair GE, Jones RA, Sue-Ling HM, Johnston D (1995) Mechanism of synergy of levamisole and fluorouracil: induction of human leukocyte antigen class I in a colorectal cancer cell line. J Natl Cancer Inst 87(7):489–496PubMedGoogle Scholar
  92. 92.
    Fisk B, Ioannides CG (1998) Increased sensitivity of adriamycin-selected tumor lines to CTL-mediated lysis results in enhanced drug sensitivity. Cancer Res 58(21):4790–4793PubMedGoogle Scholar
  93. 93.
    Matsuzaki I, Suzuki H, Kitamura M, Minamiya Y, Kawai H, Ogawa J (2000) Cisplatin induces fas expression in esophageal cancer cell lines and enhanced cytotoxicity in combination with LAK cells. Oncology 59(4):336–343PubMedGoogle Scholar
  94. 94.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73PubMedGoogle Scholar
  95. 95.
    Orsini F, Pavelic Z, Mihich E (1977) Increased primary cell-mediated immunity in culture subsequent to adriamycin or daunorubicin treatment of spleen donor mice. Cancer Res 37(6):1719–1726PubMedGoogle Scholar
  96. 96.
    Maccubbin DL, Wing KR, Mace KF, Ho RL, Ehrke MJ, Mihich E (1992) Adriamycin-induced modulation of host defenses in tumor-bearing mice. Cancer Res 52(13):3572–3576PubMedGoogle Scholar
  97. 97.
    Chan OT, Yang LX (2000) The immunological effects of taxanes. Cancer Immunol Immunother 49(4–5):181–185PubMedGoogle Scholar
  98. 98.
    Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105(7):2862–2868PubMedGoogle Scholar
  99. 99.
    Ercolini AM, Ladle BH, Manning EA et al (2005) Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 201(10):1591–1602PubMedCentralPubMedGoogle Scholar
  100. 100.
    Garnett CT, Schlom J, Hodge JW (2008) Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin Cancer Res 14(11):3536–3544PubMedCentralPubMedGoogle Scholar
  101. 101.
    Arlen PM, Gulley JL, Parker C et al (2006) A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12(4):1260–1269PubMedCentralPubMedGoogle Scholar
  102. 102.
    Gribben JG, Ryan DP, Boyajian R et al (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 11(12):4430–4436PubMedGoogle Scholar
  103. 103.
    Antonia SJ, Mirza N, Fricke I et al (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12(3 Pt 1):878–887PubMedGoogle Scholar
  104. 104.
    Petrylak D (2006) Defining the optimal role of immunotherapy and chemotherapy: advanced prostate cancer patients who receive sipuleucel-T (Provenge) followed by docetaxel derive greatest survival benefit [abstract]. In: 14th Annual Meeting of the Chemotherapy Foundation Symposium, New YorkGoogle Scholar
  105. 105.
    Finke JH, Rini B, Ireland J et al (2008) Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res 14(20):6674–6682PubMedGoogle Scholar
  106. 106.
    Lenahan C, Cho D, Bissonnette A et al (2008) Immunologic effects of sunitinib in renal cell carcinoma [abstract]. J Clin Oncol 26(15S):14551Google Scholar
  107. 107.
    Clinical Trials (PDQ): autologous vaccination of stage 4 renal cell carcinoma combined with sunitinib. January 2009. Available at: http://www.cancer.gov/search/ViewClinicalTrials.aspx?cdrid=642429&version=HealthProfessional&protocolsearchid=7170950
  108. 108.
    Saenger YM, Wolchok JD (2008) The heterogeneity of the kinetics of response to ipilimumab in metastatic melanoma: patient cases. Cancer Immun 8:1PubMedGoogle Scholar
  109. 109.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216PubMedGoogle Scholar
  110. 110.
    Therasse P, Eisenhauer EA, Verweij J (2006) RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 42(8):1031–1039PubMedGoogle Scholar
  111. 111.
    Schlom J, Arlen PM, Gulley JL (2007) Cancer vaccines: moving beyond current paradigms. Clin Cancer Res 13(13):3776–3782PubMedCentralPubMedGoogle Scholar
  112. 112.
    von Mehren M, Arlen P, Gulley J et al (2001) The influence of granulocyte macrophage colony-stimulating factor and prior chemotherapy on the immunological response to a vaccine (ALVAC-CEA B7.1) in patients with metastatic carcinoma. Clin Cancer Res 7(5):1181–1191Google Scholar
  113. 113.
    Britten CM, Meyer RG, Kreer T, Drexler I, Wolfel T, Herr W (2002) The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in IFN-gamma ELISPOT assays. J Immunol Methods 259(1–2):95–110PubMedGoogle Scholar
  114. 114.
    Janetzki S, Panageas KS, Ben-Porat L et al (2008) Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI). Cancer Immunol Immunother 57(3):303–315PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ravi A. Madan
    • 1
  • Theresa A. Ferrara
    • 1
  • James L. Gulley
    • 1
    • 2
  1. 1.Laboratory of Tumor Immunology and BiologyNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.BethesdaUSA

Personalised recommendations