Skip to main content

Molecular Targets

  • Chapter
  • First Online:
  • 3767 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The optimal targeting of cancer requires not only the selection of the target but also the identification of the patients whose cancer depends on the targeted pathway. The objective of this chapter is to give an overview of molecular targets in cancer therapeutics. Targets have been categorized as either established or novel types. Established targets include those against which most currently licensed anticancer drugs were developed and include DNA, microtubules, and nuclear hormone receptors. Novel targets are those under current preclinical and clinical investigation. The section on novel targets emphasizes the relationships of the novel targets to the biological traits of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  3. Karnofsky DA (1958) Summary of results obtained with nitrogen mustard in the treatment of neoplastic disease. Ann N Y Acad Sci 68:899–914

    CAS  PubMed  Google Scholar 

  4. Workman P (2001) Scoring a bull's-eye against cancer genome targets. Curr Opin Pharmacol 1:342–352

    CAS  PubMed  Google Scholar 

  5. Faratian D, Bown JL, Smith VA, Langdon SP, Harrison DJ (2010) Cancer systems biology. Methods Mol Biol 662:245–263

    CAS  PubMed  Google Scholar 

  6. Garrett MD, Workman P (1999) Discovering novel chemotherapeutic drugs for the third millennium. Eur J Cancer 35:2010–2030

    CAS  PubMed  Google Scholar 

  7. Lackner MR (2010) Prospects for personalized medicine with inhibitors targeting the RAS and PI3K pathways. Expert Rev Mol Diagn 10:75–87

    CAS  PubMed  Google Scholar 

  8. Annunziata CM, O’Shaughnessy J (2010) Poly (adp-ribose) polymerase as a novel therapeutic target in cancer. Clin Cancer Res 16:4517–4526

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hartley JA, Gibson NW, Kohn KW, Mattes WB (1986) DNA sequence selectivity of guanine-N7 alkylation by three antitumor chloroethylating agents. Cancer Res 46:1943–1947

    CAS  PubMed  Google Scholar 

  10. Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ, Lippert B, Jarvi E, Resvick R (1991) 2'-Deoxy-2'-methylenecytidine and 2'-deoxy-2',2'-difluorocytidine 5'-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 34:1879–1884

    CAS  PubMed  Google Scholar 

  11. Townsend AJ, Cheng YC (1987) Sequence-specific effects of ara-5-aza-CTP and ara-CTP on DNA synthesis by purified human DNA polymerases in vitro: visualization of chain elongation on a defined template. Mol Pharmacol 32:330–339

    CAS  PubMed  Google Scholar 

  12. Christie NT, Drake S, Meyn RE, Nelson JA (1984) 6-Thioguanine-induced DNA damage as a determinant of cytotoxicity in cultured Chinese hamster ovary cells. Cancer Res 44:3665–3671

    CAS  PubMed  Google Scholar 

  13. Rai KR, Holland JF, Glidewell OJ, Weinberg V, Brunner K, Obrecht JP, Preisler HD, Nawabi IW, Prager D, Carey RW et al (1981) Treatment of acute myelocytic leukemia: a study by cancer and leukemia group B. Blood 58:1203–1212

    CAS  PubMed  Google Scholar 

  14. Kaye SB (1994) Gemcitabine: current status of phase I and II trials. J Clin Oncol 12:1527–1531

    CAS  PubMed  Google Scholar 

  15. Schmiegelow K, Bretton-Meyer U (2001) 6-mercaptopurine dosage and pharmacokinetics influence the degree of bone marrow toxicity following high-dose methotrexate in children with acute lymphoblastic leukemia. Leukemia 15:74–79

    CAS  PubMed  Google Scholar 

  16. Cassileth PA, Lynch E, Hines JD, Oken MM, Mazza JJ, Bennett JM, McGlave PB, Edelstein M, Harrington DP, O’Connell MJ (1992) Varying intensity of postremission therapy in acute myeloid leukemia. Blood 79:1924–1930

    CAS  PubMed  Google Scholar 

  17. Webley SD, Welsh SJ, Jackman AL, Aherne GW (2001) The ability to accumulate deoxyuridine triphosphate and cellular response to thymidylate synthase (TS) inhibition. Br J Cancer 85:446–452

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Chabner BA, Myers CE, Coleman CN, Johns DG (1975) The clinical pharmacology of antineoplastic agents (first of two parts). N Engl J Med 292:1107–1113

    CAS  PubMed  Google Scholar 

  19. Iacopetta B, Grieu F, Joseph D, Elsaleh H (2001) A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br J Cancer 85:827–830

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Matherly LH, Taub JW, Ravindranath Y, Proefke SA, Wong SC, Gimotty P, Buck S, Wright JE, Rosowsky A (1995) Elevated dihydrofolate reductase and impaired methotrexate transport as elements in methotrexate resistance in childhood acute lymphoblastic leukemia. Blood 85:500–509

    CAS  PubMed  Google Scholar 

  21. Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, Shackelford KA, Mendelsohn LG, Soose DJ, Patel VF et al (1997) LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57:1116–1123

    CAS  PubMed  Google Scholar 

  22. Fuld AD, Dragnev KH, Rigas JR (2010) Pemetrexed in advanced non-small-cell lung cancer. Expert Opin Pharmacother 11:1387–1402

    CAS  PubMed  Google Scholar 

  23. Burden DA, Osheroff N (1998) Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta 1400:139–154

    CAS  PubMed  Google Scholar 

  24. Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1400:83–105

    CAS  PubMed  Google Scholar 

  25. Weisenberg RC, Deery WJ, Dickinson PJ (1976) Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules. Biochemistry 15:4248–4254

    CAS  PubMed  Google Scholar 

  26. Himes RH (1991) Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol Ther 51:257–267

    CAS  PubMed  Google Scholar 

  27. Dumontet C, Sikic BI (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 17:1061–1070

    CAS  PubMed  Google Scholar 

  28. Dye RB, Fink SP, Williams RC Jr (1993) Taxol-induced flexibility of microtubules and its reversal by MAP-2 and Tau. J Biol Chem 268:6847–6850

    CAS  PubMed  Google Scholar 

  29. Woodward EJ, Twelves C (2010) Scheduling of taxanes: a review. Curr Clin Pharmacol 5:226–231

    CAS  PubMed  Google Scholar 

  30. Kumar V, Green S, Staub A, Chambon P (1986) Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 5:2231–2236

    CAS  PubMed  Google Scholar 

  31. Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, Yee D (1999) Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol 13:787–796

    CAS  PubMed  Google Scholar 

  32. Webb P, Lopez GN, Uht RM, Kushner PJ (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9:443–456

    CAS  PubMed  Google Scholar 

  33. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A (2009) History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 30:343–375

    CAS  PubMed  Google Scholar 

  34. MacLean HE, Warne GL, Zajac JD (1997) Localization of functional domains in the androgen receptor. J Steroid Biochem Mol Biol 62:233–242

    CAS  PubMed  Google Scholar 

  35. Denmeade SR, Lin XS, Isaacs JT (1996) Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251–265

    CAS  PubMed  Google Scholar 

  36. Taplin ME, Ho SM (2001) Clinical review 134: The endocrinology of prostate cancer. J Clin Endocrinol Metab 86:3467–3477

    CAS  PubMed  Google Scholar 

  37. Grossmann ME, Huang H, Tindall DJ (2001) Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 93:1687–1697

    CAS  PubMed  Google Scholar 

  38. Hillmann AG, Ramdas J, Multanen K, Norman MR, Harmon JM (2000) Glucocorticoid receptor gene mutations in leukemic cells acquired in vitro and in vivo. Cancer Res 60:2056–2062

    CAS  PubMed  Google Scholar 

  39. Kotsakis A, Georgoulias V (2010) Targeting epidermal growth factor receptor in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother 11:2363–2389

    CAS  PubMed  Google Scholar 

  40. Moon C, Chae YK, Lee J (2010) Targeting epidermal growth factor receptor in head and neck cancer: lessons learned from cetuximab. Exp Biol Med (Maywood) 235:907–920

    CAS  Google Scholar 

  41. Barros FF, Powe DG, Ellis IO, Green AR (2010) Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments. Histopathology 56:560–572

    PubMed  Google Scholar 

  42. Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 11:1172–1183

    CAS  PubMed  Google Scholar 

  43. Mauro MJ, O’Dwyer M, Heinrich MC, Druker BJ (2002) STI571: a paradigm of new agents for cancer therapeutics. J Clin Oncol 20:325–334

    CAS  PubMed  Google Scholar 

  44. Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356

    CAS  PubMed  Google Scholar 

  45. Huettner CS, Zhang P, Van Etten RA, Tenen DG (2000) Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24:57–60

    CAS  PubMed  Google Scholar 

  46. Iyer R, Fetterly G, Lugade A, Thanavala Y (2010) Sorafenib: a clinical and pharmacologic review. Expert Opin Pharmacother 11:1943–1955

    CAS  PubMed  Google Scholar 

  47. Flaherty KT, Rosen MA, Heitjan DF, Gallagher ML, Schwartz B, Schnall MD, O’Dwyer PJ (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7:496–501

    CAS  PubMed  Google Scholar 

  48. Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, De Greve J, Douillard JY, Lathia C, Schwartz B et al (2006) Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:4293–4300

    CAS  PubMed  Google Scholar 

  49. Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19:6680–6686

    CAS  PubMed  Google Scholar 

  50. Di Lorenzo G, Buonerba C, Biglietto M, Scognamiglio F, Chiurazzi B, Riccardi F, Carteni G (2010) The therapy of kidney cancer with biomolecular drugs. Cancer Treat Rev 36(Suppl 3):S16–20

    PubMed  Google Scholar 

  51. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    CAS  PubMed  Google Scholar 

  52. Bernstein BE, Tong JK, Schreiber SL (2000) Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci USA 97:13708–13713

    CAS  PubMed  Google Scholar 

  53. Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12:1565–1569

    CAS  PubMed  Google Scholar 

  54. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814

    CAS  PubMed  Google Scholar 

  55. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    CAS  PubMed  Google Scholar 

  56. Clague MJ, Liu H, Urbé S (2012) Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23(3):457–467

    Google Scholar 

  57. Adams J (2002) Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 8:S49–S54

    CAS  PubMed  Google Scholar 

  58. Genin E, Reboud-Ravaux M, Vidal J (2010) Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr Top Med Chem 10:232–256

    CAS  PubMed  Google Scholar 

  59. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    CAS  PubMed  Google Scholar 

  61. Ratnam K, Low JA (2007) Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 13:1383–1388

    CAS  PubMed  Google Scholar 

  62. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    CAS  PubMed  Google Scholar 

  63. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    CAS  PubMed  Google Scholar 

  64. Tutt A, Ashworth A (2002) The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med 8:571–576

    CAS  PubMed  Google Scholar 

  65. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450

    CAS  PubMed  Google Scholar 

  66. Lord CJ, Ashworth A (2008) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8:363–369

    CAS  PubMed  Google Scholar 

  67. Yue QX, Liu X, Guo DA (2010) Microtubule-binding natural products for cancer therapy. Planta Med 76:1037–1043

    CAS  PubMed  Google Scholar 

  68. Toppmeyer DL, Goodin S (2010) Ixabepilone, a new treatment option for metastatic breast cancer. Am J Clin Oncol 33:516–521

    CAS  PubMed  Google Scholar 

  69. Santos FP, Ravandi F (2009) Advances in treatment of chronic myelogenous leukemia—new treatment options with tyrosine kinase inhibitors. Leuk Lymphoma 50(Suppl 2):16–26

    CAS  PubMed  Google Scholar 

  70. Belani CP (2010) The role of irreversible EGFR inhibitors in the treatment of non-small cell lung cancer: overcoming resistance to reversible EGFR inhibitors. Cancer Invest 28:413–423

    CAS  PubMed  Google Scholar 

  71. Guarneri V, Barbieri E, Dieci MV, Piacentini F, Conte P (2010) Anti-HER2 neoadjuvant and adjuvant therapies in HER2 positive breast cancer. Cancer Treat Rev 36(Suppl 3):S62–S66

    CAS  PubMed  Google Scholar 

  72. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A et al (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324:787–790

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, Rathkopf D, Shelkey J, Yu EY, Alumkal J et al (2010) Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 375:1437–1446

    CAS  PubMed Central  PubMed  Google Scholar 

  74. McKeage MJ, Baguley BC (2010) Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 116:1859–1871

    CAS  PubMed  Google Scholar 

  75. Malcontenti-Wilson C, Muralidharan V, Skinner S, Christophi C, Sherris D, O’Brien PE (2001) Combretastatin A4 prodrug study of effect on the growth and the microvasculature of colorectal liver metastases in a murine model. Clin Cancer Res 7:1052–1060

    CAS  PubMed  Google Scholar 

  76. Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J (2000) A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol 20:1448–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Stephens LR, Anderson KE, Hawkins PT (2001) Src family kinases mediate receptor-stimulated, phosphoinositide 3-kinase-dependent, tyrosine phosphorylation of dual adaptor for phosphotyrosine and 3-phosphoinositides-1 in endothelial and B cell lines. J Biol Chem 276:42767–42773

    CAS  PubMed  Google Scholar 

  78. Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2:760–768

    CAS  PubMed  Google Scholar 

  79. Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390

    PubMed  Google Scholar 

  80. Stein RC, Waterfield MD (2000) PI3-kinase inhibition: a target for drug development? Mol Med Today 6:347–357

    CAS  PubMed  Google Scholar 

  81. Albert S, Serova M, Dreyer C, Sablin MP, Faivre S, Raymond E (2010) New inhibitors of the mammalian target of rapamycin signaling pathway for cancer. Expert Opin Investig Drugs 19:919–930

    CAS  PubMed  Google Scholar 

  82. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    CAS  PubMed  Google Scholar 

  83. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    CAS  PubMed  Google Scholar 

  84. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19:6613–6626

    CAS  PubMed  Google Scholar 

  85. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr (1998) Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 18:2553–2558

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303

    CAS  PubMed  Google Scholar 

  87. Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T, Tefferi A (2011) JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 25(2):218–225

    Google Scholar 

  88. Jochum W, Passegue E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412

    CAS  PubMed  Google Scholar 

  89. Verde P, Casalino L, Talotta F, Yaniv M, Weitzman JB (2007) Deciphering AP-1 function in tumorigenesis: fra-ternizing on target promoters. Cell Cycle 6:2633–2639

    CAS  PubMed  Google Scholar 

  90. Shaulian E (2010) AP-1—the Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal 22:894–899

    CAS  PubMed  Google Scholar 

  91. Boxer LM, Dang CV (2001) Translocations involving c-myc and c-myc function. Oncogene 20:5595–5610

    CAS  PubMed  Google Scholar 

  92. Baudino TA, Cleveland JL (2001) The Max network gone mad. Mol Cell Biol 21:691–702

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Albihn A, Johnsen JI, Henriksson MA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107:163–224

    CAS  PubMed  Google Scholar 

  94. Aleshin A, Finn RS (2010) SRC: a century of science brought to the clinic. Neoplasia 12:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Schenone S, Brullo C, Musumeci F, Botta M (2010) Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Investig Drugs 19:931–945

    CAS  PubMed  Google Scholar 

  96. Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F (2009) Ras signaling and therapies. Adv Cancer Res 102:1–17

    CAS  PubMed  Google Scholar 

  97. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272:14459–14464

    CAS  PubMed  Google Scholar 

  98. Fritz G, Kaina B (2006) Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets 6:1–14

    CAS  PubMed  Google Scholar 

  99. Pratilas CA, Solit DB (2007) Therapeutic strategies for targeting BRAF in human cancer. Rev Recent Clin Trials 2:121–134

    CAS  PubMed  Google Scholar 

  100. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Paraiso KH, Fedorenko IV, Cantini LP, Munko AC, Hall M, Sondak VK, Messina JL, Flaherty KT, Smalley KS (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102:1724–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G et al (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–435

    CAS  PubMed  Google Scholar 

  103. Duffy A, Kummar S (2009) Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors. Target Oncol 4:267–273

    PubMed  Google Scholar 

  104. Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8(4):244–250

    CAS  PubMed  Google Scholar 

  105. Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10:825–841

    CAS  PubMed  Google Scholar 

  106. Lu LY, Wood JL, Minter-Dykhouse K, Ye L, Saunders TL, Yu X, Chen J (2008) Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol Cell Biol 28:6870–6876

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lok W, Klein RQ, Saif MW (2010) Aurora kinase inhibitors as anti-cancer therapy. Anticancer Drugs 21:339–350

    CAS  PubMed  Google Scholar 

  109. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    CAS  PubMed  Google Scholar 

  110. Brown R, Strathdee G (2002) Epigenomics and epigenetic therapy of cancer. Trends Mol Med 8:S43–S48

    CAS  PubMed  Google Scholar 

  111. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC et al (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138

    CAS  PubMed  Google Scholar 

  112. Sebova K, Fridrichova I (2010) Epigenetic tools in potential anticancer therapy. Anticancer Drugs 21:565–577

    CAS  PubMed  Google Scholar 

  113. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  PubMed  Google Scholar 

  114. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    CAS  PubMed  Google Scholar 

  115. Mullauer L, Gruber P, Sebinger D, Buch J, Wohlfart S, Chott A (2001) Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat Res 488:211–231

    CAS  PubMed  Google Scholar 

  116. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    CAS  PubMed  Google Scholar 

  117. Xiao G, Fang H, Xing C, Xu W (2009) Structure, function and inhibition of Bcl-2 family proteins: a new target for anti-tumor agents. Mini Rev Med Chem 9:1596–1604

    CAS  PubMed  Google Scholar 

  118. Leber B, Geng F, Kale J, Andrews DW (2010) Drugs targeting Bcl-2 family members as an emerging strategy in cancer. Expert Rev Mol Med 12:e28

    PubMed  Google Scholar 

  119. Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, Tulpule A, Dunleavy K, Xiong H, Chiu YL et al (2010) Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316:887–899

    CAS  PubMed  Google Scholar 

  121. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10:561–574

    CAS  PubMed  Google Scholar 

  122. Maloney A, Workman P (2002) HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3–24

    CAS  PubMed  Google Scholar 

  123. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    CAS  PubMed  Google Scholar 

  124. William WN Jr, Heymach JV, Kim ES, Lippman SM (2009) Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 8:213–225

    CAS  PubMed  Google Scholar 

  125. Bevers TB (2010) Breast cancer prevention: an update of the STAR trial. Curr Treat Options Oncol 11:66–69

    PubMed  Google Scholar 

  126. Chaudhary UB, Turner JS (2010) Finasteride. Expert Opin Drug Metab Toxicol 6:873–881

    CAS  PubMed  Google Scholar 

  127. Bushue N, Wan YJ (2010) Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev 62:1285–1298

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Lippman SM, Lee JS, Lotan R, Hong WK (1990) Chemoprevention of upper aerodigestive tract cancers: a report of the third Upper Aerodigestive Cancer Task Force workshop. Head Neck 12:5–20

    CAS  PubMed  Google Scholar 

  129. Xu XC, Lee JS, Lee JJ, Morice RC, Liu X, Lippman SM, Hong WK, Lotan R (1999) Nuclear retinoid acid receptor beta in bronchial epithelium of smokers before and during chemoprevention. J Natl Cancer Inst 91:1317–1321

    CAS  PubMed  Google Scholar 

  130. Bae SH, Jung ES, Park YM, Kim BS, Kim BK, Kim DG, Ryu WS (2001) Expression of cyclooxygenase-2 (COX-2) in hepatocellular carcinoma and growth inhibition of hepatoma cell lines by a COX-2 inhibitor, NS-398. Clin Cancer Res 7:1410–1418

    CAS  PubMed  Google Scholar 

  131. Rodriguez-Burford C, Barnes MN, Oelschlager DK, Myers RB, Talley LI, Partridge EE, Grizzle WE (2002) Effects of nonsteroidal anti-inflammatory agents (NSAIDs) on ovarian carcinoma cell lines: preclinical evaluation of NSAIDs as chemopreventive agents. Clin Cancer Res 8:202–209

    CAS  PubMed  Google Scholar 

  132. Thun MJ, Namboodiri MM, Heath CW Jr (1991) Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 325:1593–1596

    CAS  PubMed  Google Scholar 

  133. Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S (2010) Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila) 3:1451–1461

    CAS  Google Scholar 

  134. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA (2010) Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila) 3:1066–1076

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Annunziata M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Annunziata, C.M., Dennis, P.A. (2014). Molecular Targets. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics