Robust Stability Analysis of Linear State Space Systems

  • Rama K. Yedavalli
Chapter

Abstract

In this chapter, which is also one of the main chapters of the book, we address the issue of robust stability analysis for uncertain linear dynamic systems. We first present a rigorous mathematical formulation of the problem, mainly focusing on continuous-time systems. Then, we consider various characterizations of uncertainty discussed in the previous chapter and present corresponding bounds on the perturbations for robust stability.

Keywords

Assure Doyle 

References

  1. 1.
    D. Z. Zheng. A method for determining the parameter stability regions of linear control systems. ieeeac, AC-29(2):183–185, 1984.Google Scholar
  2. 2.
    M. Eslami and D.L. Russell. On stability with large parameter variations stemming from the direct method of lyapunove. AC-25(6):1231–1234, 1980.Google Scholar
  3. 3.
    S. S. L. Chang and T. K. C. Peng. Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Trans Auto. Cont., AC-17:474–483, August 1972.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R.V. Patel, M. Toda, and B. Sridhar. Robustness of linear quadratic state feedback designs in the presence of system uncertainty. ieeeac, AC-22:945–949, 1977.Google Scholar
  5. 5.
    D. Hinrichsen and A. J. Pritchard. Stability radius of linear systems. Systems and Control Letters, 7:1–10, 1986.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    J.M. Martin. State space measures for stability robustness. ieeeac, AC-31:509–512, 1987.Google Scholar
  7. 7.
    R.K. Yedavalli, S.S. Banda, and D.B. Ridgely. Time domain stability robustness measures for linear regulators. JGCD, pages 520–525, 1985.Google Scholar
  8. 8.
    R. K. Yedavalli. Improved measures of stability-robustness for linear state space models. IEEE AC, 30:577–579, 1985.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. K. Yedavalli. Perturbation bounds for robust stability in linear state space models. IJC, 42:1507–1517, 1985.MathSciNetMATHGoogle Scholar
  10. 10.
    R. V. Patel and M. Toda. Quantitative measures of robustness for multivariable systems. Proc. Joint Amer. Contr. Conf., TP8-A, 1980.Google Scholar
  11. 11.
    K. Zhou and P. Khargonekar. Stability robustness bounds for linear state space models with structured uncertainty. IEEE Transactions on Automatic Control, AC-32:621–623, July 1987.MathSciNetCrossRefGoogle Scholar
  12. 12.
    M.Fu and B.R.Barmish. Maximal unidirectional perturbation bounds for stability of polynomials and matrices. Systems and Control Letters, 11:173, 1988.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    X. Zhang, P. Tsiotras, and A. Lanzon. An approach for computing the exact stability domain for a class of lti parameter dependent systems. International Journal of Control, 79(9):1046–1061, 2006.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    R.Genesio and A.Tesi. Results on the stability robustness of systems with state space perturbations. Systems and Control Letters, 11:39, 1988.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    L.El Ghaoui and S. Boyd. Stability robustness of linear systems to real parametric perturbations. Proc. 29th Conference on Decision and Control, pages 46–51, Honolulu 1990.Google Scholar
  16. 16.
    M. Corless and D. Da. New criteria for robust stability. In Proceedings of the International Workshop on ’Robustness in Identification and Control, Torino, Italy, June 1988.Google Scholar
  17. 17.
    B.S Chen and C.C Wong. Robust linear controller design: Time domain approach. IEEE Trans Auto. Control, 32(2):161, February 1987.Google Scholar
  18. 18.
    R.K. Yedavalli and Z. Liang. Reduced conservatism in stability robustness bounds by state transformation. IEEE AC, 31:863–866, 1986.CrossRefMATHGoogle Scholar
  19. 19.
    D.C. Hyland and D.S. Berstein. The majorant lyapunov equations nonnegative matrix equation for robust stability and performance of large scale systems. IEEE AC, 32:1005–1013, 1987.CrossRefMATHGoogle Scholar
  20. 20.
    R. K Yedavalli and S.R Kolla. Stability analysis of linear time varying systems. International Journal of Systems Science, 19(9):1853–1858, 1988.Google Scholar
  21. 21.
    D.D. Siljak. Parameter space methods for robust control design: A guided tour. IEEE Transactions on Automatic Control, AC-34:674, 1989.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. T. Juang, T. S. Kuo, and C. F. Hsu. New approach to time domain analysis for stability robustness of dynamic systems. International Journal of Systems Science, 18(7):1363–1376, 1987.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    L.Qiu and E.J. Davison. Bounds on the real stability radius. In Robustness of Dynamic Systems with Parameter Variations, 1992.Google Scholar
  24. 24.
    B.R. Barmish. New tools for robustness of linear systems. Macmillan Publishing company, Riverside, NJ, 1994.MATHGoogle Scholar
  25. 25.
    A.Tesi and A. Vicino. Robust stability of state space models with structured uncertainties. IEEE Trans on Automatic Control, 35:191–195, 1990.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    L. Qiu and E.J. Davison. New perturbation bounds for the robust stability of linear state space models. Proceedings of 25th CDC,Athens,Greece, pages 751–755, 1986.Google Scholar
  27. 27.
    R. K. Yedavalli. Stability robustness measures under dependent uncertainty. Proc. Amer. Control Conf., Atlanta:820–823, June 1988.Google Scholar
  28. 28.
    L.Qiu and E.J. Davison. The stability robustness determination of state space models with real unstructured perturbations. Mathematics of Control, Signals and Systems, 2:247–267, 1991.Google Scholar
  29. 29.
    R. K. Yedavalli. Flight control application of new stability robustness bounds for linear uncertain systems. AIAA Journal of Guidance, Control and Dynamics, 16(6):1032, Nov-Dec 1993.Google Scholar
  30. 30.
    A.T.Fuller. Conditions for a matrix to have only characteristic roots with negative real parts. Journal of Mathematical Analysis and Applications, 23:71–98, 1968.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    E.I.Jury. Inners and stability of dynamic systems. Wiley, New York, 1974.Google Scholar
  32. 32.
    N.W Hagood. Cost averaging techniques for robust control of parametrically uncertain systems. Proc. AIAA Guidance, Navigation and Control Conference, AIAA 91-2605, 1991.Google Scholar
  33. 33.
    L.Saydy, A.L.Tits, and E.H.Abed. Guardian maps and the generalized stability of parameterized families of matrices and polynomials. Mathematics of Control, Signals and Systems, 3:345, 1990.Google Scholar
  34. 34.
    S. Rern, P. T. Kabamba, and D. S. Bernstein. Guardian map approach to robust stability of linear systems with constant real parameter uncertainty. IEEE Transactions on Automatic Control, 39(1):162–164, 1994.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    D. S Bernstein and W.M Haddad. Robust stability and performance analysis for state space systems via quadratic lyapunov bounds. SIAM Journal of Matrix Analysis and Applications, 11:239–271, 1990.Google Scholar
  36. 36.
    D. S Bernstein and W.M Haddad. Robust stability and performance analysis for linear dynamic systems. IEEE Trans Auto. Control, 34:751–758, 1989.Google Scholar
  37. 37.
    J.P Guiver and N.K Bose. Strictly hurwitz property invariance of quartics under coefficient perturbation. IEEE Trans Auto. Control, 28(1):106–107, 1983.Google Scholar
  38. 38.
    V.L Kharitonov. Asymptotic stability of an equilibrium position of a family of linear differntial equations. Differensialnye Uravneniya, 14:2086–2088, 1978.Google Scholar
  39. 39.
    B.R. Barmish. Invariance of the strict Hurwitz property for polynomials with perturbed coefficients. AC-29:935–936, 1984.Google Scholar
  40. 40.
    N.K Bose. A system theoretic approach to stability of sets of polynomials. Contemporary Mathematics, 47:25–35, 1985.Google Scholar
  41. 41.
    B.D.O.Anderson, E.I. Jury, and M.Mansour. On robust Hurwitz polynomials. AC-32:909–913, 1987.Google Scholar
  42. 42.
    S.P Bhattacharyya, H Chappellat, and L.H Keel. Robust control: The Parametric approach. Prentice Hall, Englewood cliffs, NJ, 1995.Google Scholar
  43. 43.
    A.C.Bartlett, C.V.Hollot, and L. Huang. Root locations of an entire polytope of polynomials: it suffices to check the edges. Mathematics of Control,Signals and Systems, 1:61–71, 1988.Google Scholar
  44. 44.
    B. R Barmish. A generalization of kharitonov’s four polynomial concept for robust stability problems with linearly dependent coefficient perturbations. IEEE Trans Auto. Control, AC-34:157–165, 1989.Google Scholar
  45. 45.
    J.E. Ackermann, H.Z. Hu, and D. Kaesbauer. Robustness analysis: A case study. AC-35:352–356, 1990.Google Scholar
  46. 46.
    R. K. Yedavalli. Robust stabilization of linear interval systems. Proc. Amer. Control Conf.,, Minneapolis:1579–1583, June 1987.Google Scholar
  47. 47.
    B.R.Barmish, M.Fu, and S.Saleh. Stability of a polytope of matrices:counterexamples. IEEE AC, 33(6):569, June 1988.Google Scholar
  48. 48.
    B.R.Barmish and C.V. Hollot. Counterexample to a recent result on the stability of interval matrices by s. bialas. International Journal of Control, 39:1103, 1984.Google Scholar
  49. 49.
    K. H Wei and R. K. Yedavalli. Invariance of the strict hurwitz property for uncertain polynomials with dependent coefficients. IEEE Trans On Autom. Control, 32(10):907–909, October 1987.Google Scholar
  50. 50.
    M.Mansour. Robust stability of interval matrices. Proceedings of the IEEE CDC, 1989.Google Scholar
  51. 51.
    J.A Heinen. Sufficient conditions for the stability of interval matrices. Int. J of Control, 39(6):1323–1328, 1984.Google Scholar
  52. 52.
    M.B Argoun. On sufficient conditions for the stability of interval matrices. Int. J of Control, 44(5):1245–1250, 1986.Google Scholar
  53. 53.
    Z.C Shi and W.B Gao. Stability of interval parameter matrices. Int. J of Control, 45(3):1093–1101, 1987.Google Scholar
  54. 54.
    R. K. Yedavalli. Stability analysis of interval matrices- another sufficient condition. Int. J of Control, pages 767–772, March 1986.Google Scholar
  55. 55.
    C.S. Zhou and J.L Deng. The stability of the grey linear system. Int. J of Control, 43(1):313, 1986.Google Scholar
  56. 56.
    C.L Jiang. Sufficient condition for the asymptotic stability of interval matrices. Int. J of Control, 46(5):1803, 1987.Google Scholar
  57. 57.
    M Mansour. Sufficient conditions for the asymptotic stability of interval matrices. Int. J of Control, 47(6):1973, 1988.Google Scholar
  58. 58.
    C.L Jiang. Another sufficient condition for the stability of interval matrices. Int. J of Control, 47(1):181, 1988.Google Scholar
  59. 59.
    K.Wang, A.N. Michel, and D.Liu. Necessary and sufficient conditions for the hurwitz and schur stability of interval matrices. IEEE AC, 39(6):1251, Jun 1994.Google Scholar
  60. 60.
    Y. T Juang, T.S Kuo, C. F Hsu, and S.D Wang. Root locus approach to the stability analysis of interval matrices. Int. J of Control, 46(3):817, 1987.Google Scholar
  61. 61.
    D.B Petkovski. Stability of interval matrices: Improved bounds. Int. J of Control, 48(6):2265, 1988.Google Scholar
  62. 62.
    J.M Martin and G.A Hewer. Smallest destabilizing perturbations for linear systems. Int. J of Control, 46:1495, 1987.Google Scholar
  63. 63.
    S.Bialas. A necessary and sufficient condition for the stability of convex combinations of stable polynomials or matrices. Bulletin of the Polish Academy of Sciences, 33:473, 1985.MathSciNetMATHGoogle Scholar
  64. 64.
    L.X Xin. Stability of interval matrices. Int. J of Control, 45(1):203–210, 1987.Google Scholar
  65. 65.
    L.X Xin. Necessary and sufficient conditions for stability of a class of interval matrices. Int. J of Control, 45(1):211–214, 1987.Google Scholar
  66. 66.
    W.J Wang and T.T Lee. Robust stability for single and large scale perturbed systems. International Journal of System Science, 19(3):405–413, 1988.Google Scholar
  67. 67.
    S.S Wang and W.G Lin. A new approach to the stability analysis of interval systems. Control Theory Adv Technol, 7(2):271–284, 1991.Google Scholar
  68. 68.
    M.E. Sezer and D.D Siljak. On stability of interval matrices. IEEE Trans Auto. Control, 39(2):368–371, February 1994.Google Scholar
  69. 69.
    O Pastravanu and M.H Matcovschi. Comments on “assessing the stability of linear time invariant continuous interval dynamic systems”. IEEE Trans Auto. Control, 56(6):1442–1445, June 2011.Google Scholar
  70. 70.
    L Kolev and S Petrakieva. Assessing the stability of linear time invariant continuous interval dynamic systems. IEEE Trans Auto. Control, 50(3):393–397, March 2005.MathSciNetCrossRefGoogle Scholar
  71. 71.
    O Pastravanu and M Voicu. Necessary and sufficient conditions for componentwise stability of interval matrix systems. IEEE Trans Auto. Control, 49(6):1016–1021, June 2004.MathSciNetCrossRefGoogle Scholar
  72. 72.
    Y.K.Foo and Y.C.Soh. Stability analysis of a family of matrices. IEEE AC, 35(11):1257, Nov 1990.Google Scholar
  73. 73.
    C.B.Soh. Stability robustness measures of state space models. International Journal of Systems Science, 22(10):1867, 1991.Google Scholar
  74. 74.
    D.D Siljak. Large Scale Systems: Stability and Structure. North Holland, 1978.Google Scholar
  75. 75.
    R. K. Yedavalli. Sufficient conditions for the stability of interconnected dynamic systems. Journal of Information and Decision Technologies, 15(2):133–142, 1989.MathSciNetMATHGoogle Scholar
  76. 76.
    M.A Rotea, M Corless, D Da, and I.R Petersen. Systems with structured uncertainty:relations between quadratic stability and robust stability. IEEE Trans Auto. Cont., 38(5):799–803, May 1993.Google Scholar
  77. 77.
    A Packard and J.C Doyle. Quadratic stability with real and complex perturbations. IEEE Trans Auto. Control, 35(2):198–201, 1990.Google Scholar
  78. 78.
    Dorato P. Robust Control. IEEE press, 1987.Google Scholar
  79. 79.
    P. Dorato and R. K. Yedavalli. Recent advances in robust control. IEEE Press, 1990.Google Scholar
  80. 80.
    D.C.W Ramos and P.L.D Peres. An lmi condition for the robust stability of uncertain continuous time linear systems. IEEE Trans on Automatic Control, 47(4), April 2002.Google Scholar
  81. 81.
    F Amato, F Garofalo, L Glielmo, and A Pironti. Robust and quadratic stability via polytopic set covering. International Journal of Robust and Nonlinear Control, 5:745–756, 1995.Google Scholar
  82. 82.
    T Mori and H Kokame. A parameter dependent lyapunov function for a polytope of matrices. IEEE Trans on Automatic Control, 45:1516–1519, 2000.Google Scholar
  83. 83.
    F Garofalo, G Celentano, and L Glielmo. Stability robustness of interval matrices via quadratic lyapunov forms. IEEE Trans on Automatic Control, 38:281–284, 1993.Google Scholar
  84. 84.
    R. K. Yedavalli. Robust stability of linear interval parameter matrix family problem revisited with accurate representation and solution. Proceedings of the American Control Conference, St. Louis(MO):3710–3717, June 2009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Rama K. Yedavalli
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations