Skip to main content

Focal Ischemic White Matter Injury in Experimental Models

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 4))

  • 1433 Accesses

Abstract

The pathophysiology of central white matter is a timely subject for review. Early white matter changes are now recognized in neurological disorders ranging from Alzheimer’s and Parkinson’s diseases and vascular dementia to disorders such as diabetic cognitive dysfunction, mitochondrial syndromes, lysosomal disorders, and psychiatric illness. A plot of the use of the term “white matter” in the titles of research papers reveals an exponential growth since 2005, in large part due to this burst in interest in white matter as an early and possibly causal locus in disorders that until recently were thought to be exclusively gray matter in origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hasani OH, Smith C (in press) Traumatic white matter injury and toxic leukoencephalopathies. Expert Rev Neurother 11:1315–1324

    Google Scholar 

  • Arboix A, Marti-Vilalta JL (2009) Lacunar stroke. Expert Rev Neurother 9:179–196

    Article  PubMed  Google Scholar 

  • Back SA, Kroenke CD, Sherman LS et al (in press) White matter lesions defined by diffusion tensor imaging in older adults. Ann Neuro l70:465–476

    Google Scholar 

  • Bailey EL, Smith C, Sudlow CL, Wardlaw JM (in press) Pathology of lacunar ischemic stroke in humans-a systematic review. Brain Pathol 22:583–591

    Google Scholar 

  • Bailey EL, McCulloch J, Sudlow C, Wardlaw JM (2009) Potential animal models of lacunar stroke: a systematic review. Stroke 40:e451–e458

    Article  PubMed  Google Scholar 

  • Bakiri Y, Hamilton NB, Karadottir R, Attwell D (2008) Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 56:233–240

    Article  PubMed  Google Scholar 

  • Bondarenko A, Chesler M (2001a) Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34:134–142

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko A, Chesler M (2001b) Calcium dependence of rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34:143–149

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Fern R, Jarvinen JP et al (1998) Changes in [Ca2+]0 during anoxia in CNS white matter. Neuroreport 9:1997–2000

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, O’Malley K (in press) Axon degeneration in Parkinson’s disease. Exp Neurol

    Google Scholar 

  • Caplan LR (1989) Intracranial branch atheromatous disease: a neglected, understudied, and underused concept. Neurology 39:1246–1250

    Article  PubMed  CAS  Google Scholar 

  • Chung JW, Kim BJ, Sohn CH et al (in press) Branch atheromatous plaque: a major cause of lacunar infarction (high-resolution MRI study). Cerebrovasc Dis Extra 2:36–44

    Google Scholar 

  • Connors BW, Ransom BR, Kunis DM, Gutnick MJ (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216:1341–1343

    Article  PubMed  CAS  Google Scholar 

  • Del Bene A, Palumbo V, Lamassa M et al (in press) Progressive lacunar stroke: review of mechanisms, prognostic features, and putative treatments. Int J Stroke 7:321–329

    Google Scholar 

  • Dewar D, Dawson DA (1997) Changes of cytoskeletal protein immunostaining in myelinated fibre tracts after focal cerebral ischaemia in the rat. Acta Neuropathol 93:71–77

    Article  PubMed  CAS  Google Scholar 

  • Farkas E, Donka G, de Vos RA et al (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64

    Article  PubMed  Google Scholar 

  • Fern R (2001) Ischemia: astrocytes show their sensitive side. Prog Brain Res 132:405–411

    Article  PubMed  CAS  Google Scholar 

  • Fisher CM (1968) The arterial lesions underlying lacunes. Acta Neuropathol 12:1–15

    Article  PubMed  CAS  Google Scholar 

  • Frantseva MV, Kokarovtseva L, Naus CG et al (2002a) Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J Neurosci 22:644–653

    PubMed  CAS  Google Scholar 

  • Frantseva MV, Kokarovtseva L, Perez Velazquez JL (2002b) Ischemia-induced brain damage depends on specific gap-junctional coupling. J Cereb Blood Flow Metab 22:453–462

    Article  PubMed  Google Scholar 

  • Frost SB, Barbay S, Mumert ML et al (2006) An animal model of capsular infarct: endothelin-1 injections in the rat. Behav Brain Res 169:206–211

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G, Goodwin DA, Batchelor AM et al (2002) Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 109:145–155

    Article  PubMed  CAS  Google Scholar 

  • Gelpi E, Soler Insa JM, Parchi P et al (in press) Atypical neuropathological sCJD-MM phenotype with abundant white matter Kuru-type plaques sparing the cerebellar cortex. Neuropathology

    Google Scholar 

  • Gregoire SM, Smith K, Jager HR et al (in press) Cerebral microbleeds and long-term cognitive outcome: longitudinal cohort study of stroke clinic patients. Cerebrovasc Dis 33:430–435

    Google Scholar 

  • Gresle MM, Jarrott B, Jones NM, Callaway JK (2006) Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res 1110:13–22

    Article  PubMed  CAS  Google Scholar 

  • Hainsworth AH, Markus HS (2008) Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab 28:1877–1891

    Article  PubMed  Google Scholar 

  • Holland PR, Bastin ME, Jansen MA et al (in press) MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice. Neurobiol Aging 32:2325, e2321–2326

    Google Scholar 

  • Horsburgh K, Reimer MM, Holland P et al (in press) Axon-glial disruption: the link between vascular disease and Alzheimer's disease? Biochem Soc Trans 39:881–885

    Google Scholar 

  • Hughes PM, Anthony DC, Ruddin M et al (2003) Focal lesions in the rat central nervous system induced by endothelin-1. J Neuropathol Exp Neurol 62:1276–1286

    PubMed  CAS  Google Scholar 

  • Imai H, Masayasu H, Dewar D et al (2001) Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 32:2149–2154

    Article  PubMed  CAS  Google Scholar 

  • Irving EA, Yatsushiro K, McCulloch J, Dewar D (1997) Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab 17:612–622

    Article  PubMed  CAS  Google Scholar 

  • Irving EA, Bentley DL, Parsons AA (2001) Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol 102:627–635

    PubMed  CAS  Google Scholar 

  • Jokinen H, Lipsanen J, Schmidt R et al (in press) Brain atrophy accelerates cognitive decline in cerebral small vessel disease: the LADIS study. Neurology 78:1785–1792

    Google Scholar 

  • Kubo K, Nakao S, Jomura S et al (2009) Edaravone, a free radical scavenger, mitigates both gray and white matter damages after global cerebral ischemia in rats. Brain Res 1279:139–146

    Article  PubMed  CAS  Google Scholar 

  • Lecrux C, McCabe C, Weir CJ et al (2008) Effects of magnesium treatment in a model of internal capsule lesion in spontaneously hypertensive rats. Stroke 39:448–454

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Cohen OS, Rosenmann H et al (in press) Cerebral white matter disruption in Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol

    Google Scholar 

  • Lin B, Ginsberg MD, Busto R, Dietrich WD (1998a) Sequential analysis of subacute and chronic neuronal, astrocytic and microglial alterations after transient global ischemia in rats. Acta Neuropathol 95:511–523

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Weigel H, Cotrina ML et al (1998b) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Hu WX, Zu QQ et al (in press) A novel embolic stroke model resembling lacunar infarction following proximal middle cerebral artery occlusion in beagle dogs. J Neurosci Methods 209:90–96

    Google Scholar 

  • Lundblad M, Decressac M, Mattsson B, Bjorklund A (in press) Impaired neurotransmission caused by overexpression of alpha-synuclein in nigral dopamine neurons. Proc Natl Acad Sci USA 109:3213–3219

    Google Scholar 

  • Magnotti LM, Goodenough DA, Paul DL (in press) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59:1064–1074

    Google Scholar 

  • McCarran WJ, Goldberg MP (2007) White matter axon vulnerability to AMPA/kainate receptor-mediated ischemic injury is developmentally regulated. J Neurosci 27:4220–4229

    Article  PubMed  CAS  Google Scholar 

  • McCrimmon RJ, Ryan CM, Frier BM (in press) Diabetes and cognitive dysfunction. Lancet 379:2291–2299

    Google Scholar 

  • McDonald JW, Althomsons SP, Hyrc KL et al (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    Article  PubMed  CAS  Google Scholar 

  • Mishina M, Komaba Y, Kobayashi S et al (2005) Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir (Tokyo) 45:344–348, discussion 348

    Article  PubMed  Google Scholar 

  • Nagakane Y, Naritomi H, Oe H et al (2008) Neurological and MRI findings as predictors of progressive-type lacunar infarction. Eur Neurol 60:137–141

    Article  PubMed  Google Scholar 

  • Nakase T, Yoshioka S, Suzuki A (in press) Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke. BMC Neurol 11:39

    Google Scholar 

  • Nedergaard M (1988) Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol Scand 77:81–101

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    Article  PubMed  Google Scholar 

  • Norrving B (2008) Lacunar infarcts: no black holes in the brain are benign. Pract Neurol 8:222–228

    Article  PubMed  Google Scholar 

  • Ohta Y, Takamatsu K, Fukushima T et al (2009) Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Intern Med 48:593–596

    Article  PubMed  Google Scholar 

  • Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646, discussion 1647

    Article  PubMed  CAS  Google Scholar 

  • Patel B, Lawrence AJ, Chung AW et al (in press) Cerebral microbleeds and cognition in patients with symptomatic small vessel disease. Stroke 44:356–361

    Google Scholar 

  • Perez Velazquez JL, Kokarovtseva L, Sarbaziha R et al (2006) Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage. Eur J Neurosci 23:1–10

    Article  PubMed  Google Scholar 

  • Petito CK, Olarte JP, Roberts B et al (1998) Selective glial vulnerability following transient global ischemia in rat brain. J Neuropathol Exp Neurol 57:231–238

    Article  PubMed  CAS  Google Scholar 

  • Putaala J, Kurkinen M, Tarvos V et al (2009) Silent brain infarcts and leukoaraiosis in young adults with first-ever ischemic stroke. Neurology 72:1823–1829

    Article  PubMed  CAS  Google Scholar 

  • Rapp JH, Pan XM, Neumann M et al (2008) Microemboli composed of cholesterol crystals disrupt the blood–brain barrier and reduce cognition. Stroke 39:2354–2361

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Duffy HS, Dudek FE et al (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a "panglial syncytium" that is not coupled to neurons. J Comp Neurol 388:265–292

    Article  PubMed  CAS  Google Scholar 

  • Reimer MM, McQueen J, Searcy L et al (in press) Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion. J Neurosci 31:18185–18194

    Google Scholar 

  • Renaud DL (in press) Lysosomal disorders associated with leukoencephalopathy. Semin Neurol 32:51–54

    Google Scholar 

  • Richard MJ, Saleh TM, El Bahh B, Zidichouski JA (in press) A novel method for inducing focal ischemia in vitro. J Neurosci Methods 190:20–27

    Google Scholar 

  • Rosenberg PA, Li Y, Ali S et al (1999) Intracellular redox state determines whether nitric oxide is toxic or protective to rat oligodendrocytes in culture. J Neurochem 73:476–484

    Article  PubMed  CAS  Google Scholar 

  • Sacco S, Marini C, Totaro R et al (2006) A population-based study of the incidence and prognosis of lacunar stroke. Neurology 66:1335–1338

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Chin Y, Kato T et al (2009) White matter activated glial cells produce BDNF in a stroke model of monkeys. Neurosci Res 65:71–78

    Article  PubMed  CAS  Google Scholar 

  • Schabitz WR, Li F, Fisher M (2000) The N-methyl-d-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke 31:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Serena J, Leira R, Castillo J et al (2001) Neurological deterioration in acute lacunar infarctions: the role of excitatory and inhibitory neurotransmitters. Stroke 32:1154–1161

    Article  PubMed  CAS  Google Scholar 

  • Shannon C, Salter M, Fern R (2007) GFP imaging of live astrocytes: regional differences in the effects of ischaemia upon astrocytes. J Anat 210:684–692

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Ohtani R, Ihara M, Tomimoto H (2004) White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35:2598–2603

    Article  PubMed  Google Scholar 

  • Shih AY, Blinder P, Tsai PS et al (in press a) The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci 16:55–63

    Google Scholar 

  • Shih AY, Driscoll JD, Drew PJ et al (in press b) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32:1277–1309

    Google Scholar 

  • Shobha N, Fang J, Hill MD (in press) Do lacunar strokes benefit from thrombolysis? Evidence from the Registry of the Canadian Stroke Network. Int J Stroke

    Google Scholar 

  • Smith EE, Schneider JA, Wardlaw JM, Greenberg SM (in press) Cerebral microinfarcts: the invisible lesions. Lancet Neurol 11:272–282

    Google Scholar 

  • Sozmen EG, Kolekar A, Havton LA, Carmichael ST (2009) A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Methods 180: 261–272

    Article  PubMed  Google Scholar 

  • Strozyk D, Dickson DW, Lipton RB et al (in press) Contribution of vascular pathology to the clinical expression of dementia. Neurobiol Aging 31:1710–1720

    Google Scholar 

  • Stys PK, Ransom BR, Waxman SG, Davis PK (1990) Role of extracellular calcium in anoxic injury of mammalian central white matter. Proc Natl Acad Sci U S A 87:4212–4216

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Tian GF, Peng W et al (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10:754–762

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Imai H, Konno K et al (2008) Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke 39: 205–212

    Article  PubMed  Google Scholar 

  • Tekkok SB, Goldberg MP (2001) Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21:4237–4248

    PubMed  CAS  Google Scholar 

  • Tress O, Maglione M, May D et al (in press) Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci 32:7499–7518

    Google Scholar 

  • Ueno Y, Zhang N, Miyamoto N et al (2009) Edaravone attenuates white matter lesions through endothelial protection in a rat chronic hypoperfusion model. Neuroscience 162:317–327

    Article  PubMed  CAS  Google Scholar 

  • Valeriani V, Dewar D, McCulloch J (2000) Quantitative assessment of ischemic pathology in axons, oligodendrocytes, and neurons: attenuation of damage after transient ischemia. J Cereb Blood Flow Metab 20:765–771

    Article  PubMed  CAS  Google Scholar 

  • Vermeer SE, Longstreth WT Jr, Koudstaal PJ (2007) Silent brain infarcts: a systematic review. Lancet Neurol 6:611–619

    Article  PubMed  Google Scholar 

  • Walker EJ, Rosenberg GA (in press) Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 88:764–773

    Google Scholar 

  • Walterfang M, Velakoulis D, Whitford TJ, Pantelis C (in press) Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Rev Neurother 11:971–987

    Google Scholar 

  • Wang HH, Hsieh HL, Yang CM (in press) Nitric oxide production by endothelin-1 enhances astrocytic migration via the tyrosine nitration of matrix metalloproteinase-9. J Cell Physiol 226: 2244–2256

    Google Scholar 

  • Wang M, Iliff JJ, Liao Y et al (in press) Cognitive deficits and delayed neuronal loss in a mouse model of multiple microinfarcts. J Neurosci 32:17948–17960

    Google Scholar 

  • Windle V, Szymanska A, Granter-Button S et al (2006) An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 201:324–334

    Article  PubMed  CAS  Google Scholar 

  • Wong LJ (in press) Mitochondrial syndromes with leukoencephalopathies. Semin Neurol 32:55–61

    Google Scholar 

  • Yam PS, Takasago T, Dewar D et al (1997) Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res 760:150–157

    Article  PubMed  CAS  Google Scholar 

  • Yam PS, Dewar D, McCulloch J (1998) Axonal injury caused by focal cerebral ischemia in the rat. J Neurotrauma 15:441–450

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Niizuma K, Katsu M et al (in press) NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 31:868–880

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fern Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fern, R. (2014). Focal Ischemic White Matter Injury in Experimental Models. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics