Skip to main content

Mechanisms Underlying the Selective Vulnerability of Developing Human White Matter

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Abstract

This review focuses on what we have learned about why periventricular leukomalacia is a lesion characteristic of the developing human brain, the conspicuous gaps in this knowledge, and what this knowledge tells us about how to approach treating it. Here, the focus is on the acute lesion and what is hypothesized to be the initiating event in producing this lesion, which, as is made clear, is injury and death of developing oligodendrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72: 971–983

    Google Scholar 

  • Aden U, Favrais G, Plaisant F, Winerdal M, Felderhoff-Mueser U, Lampa J, Lelievre V, Gressens P (2010) Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFalpha pathway and protection by etanercept. Brain Behav Immun 24:747–758

    CAS  PubMed  Google Scholar 

  • Alexopoulos H, Kosmidis ML, Dalmau J, Dalakas MC (2011) Paraneoplastic anti-NMDAR encephalitis: long term follow-up reveals persistent serum antibodies. J Neurol 258: 1568–1570

    PubMed  Google Scholar 

  • Andiman SE, Haynes RL, Trachtenberg FL, Billiards SS, Folkerth RD, Volpe JJ, Kinney HC (2010) The cerebral cortex overlying periventricular leukomalacia: analysis of pyramidal neurons. Brain Pathol 20:803–814

    PubMed  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    CAS  PubMed  Google Scholar 

  • Auer R, Kalimo H, Olsson Y, Wieloch T (1985) The dentate gyrus in hypoglycemia: pathology implicating excitotoxin-mediated neuronal necrosis. Acta Neuropathol 67:279–288

    CAS  PubMed  Google Scholar 

  • Auer RN (1986) Progress review: hypoglycemic brain damage. Stroke 17:699–708

    CAS  PubMed  Google Scholar 

  • Auer RN (1991) Excitotoxic mechanisms, and age-related susceptibility to brain damage in ischemia, hypoglycemia and toxic mussel poisoning. Neurotoxicology 12:541–546

    CAS  PubMed  Google Scholar 

  • Auer RN (2004) Hypoglycemic brain damage. Metab Brain Dis 19:169–175

    PubMed  Google Scholar 

  • Auer RN, Sutherland GR (2002) Hypoxia and related conditions. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. Arnold, New York, pp 233–280

    Google Scholar 

  • Auer RN, Hugh J, Cosgrove E, Curry B (1989) Neuropathologic findings in three cases of profound hypoglycemia. Clin Neuropathol 8:63–68

    CAS  PubMed  Google Scholar 

  • Back SA, Riddle A, Dean J, Hohimer AR (2012) The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant. Neurotherapeutics 9:359–370

    PubMed  Google Scholar 

  • Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    CAS  PubMed  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  • Back SA, Craig A, Kayton RJ, Luo NL, Meshul CK, Allcock N, Fern R (2007) Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J Cereb Blood Flow Metab 27:334–347

    CAS  PubMed  Google Scholar 

  • Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22:455–463

    CAS  PubMed  Google Scholar 

  • Back SA, Luo NL, Mallinson RA, O'Malley JP, Wallen LD, Frei B, Morrow JD, Petito CK, Roberts CT Jr, Murdoch GH, Montine TJ (2005a) Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol 58:108–120

    CAS  PubMed  Google Scholar 

  • Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS (2005b) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    CAS  PubMed  Google Scholar 

  • Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    CAS  PubMed  Google Scholar 

  • Banerjee A, Barry VA, DasGupta BR, Martin TF (1996) N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J Biol Chem 271:20223–20226

    CAS  PubMed  Google Scholar 

  • Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7:386–410

    CAS  PubMed  Google Scholar 

  • Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA (2004a) Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24:1531–1540

    CAS  PubMed  Google Scholar 

  • Baud O, Haynes RF, Wang H, Folkerth RD, Li J, Volpe JJ, Rosenberg PA (2004b) Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur J Neurosci 20:29–40

    PubMed  Google Scholar 

  • Beltrán B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci U S A 97:14602–14607

    PubMed  Google Scholar 

  • Bezzi P, Vesce S, Panzarasa P, Volterra A (1999) Astrocytes as active participants of glutamatergic function and regulators of its homeostasis. Adv Exp Med Biol 468:69–80

    CAS  PubMed  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    CAS  PubMed  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    CAS  PubMed  Google Scholar 

  • Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208

    PubMed  Google Scholar 

  • Blandini F (2010) An update on the potential role of excitotoxicity in the pathogenesis of Parkinson's disease. Funct Neurol 25:65–71

    PubMed  Google Scholar 

  • Bode MM, D'Eugenio DB, Forsyth N, Coleman J, Gross CR, Gross SJ (2009) Outcome of extreme prematurity: a prospective comparison of 2 regional cohorts born 20 years apart. Pediatrics 124:866–874

    PubMed  Google Scholar 

  • Bowens NH, Dohare P, Kuo YH, Mongin AA (2012) DCPIB, the proposed selective blocker of volume-regulated anion channels, inhibits several glutamate transport pathways in glial cells. Mol Pharmacol 83(1):22–32

    PubMed  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    CAS  PubMed  Google Scholar 

  • Brault S, Martinez-Bermudez AK, Roberts J 2nd, Cui QL, Fragoso G, Hemdan S, Liu HN, Gobeil F Jr, Quiniou C, Kermorvant-Duchemin E, Lachance C, Almazan G, Varma DR, Chemtob S (2004) Cytotoxicity of the E(2)-isoprostane 15-E(2t)-IsoP on oligodendrocyte progenitors. Free Radic Biol Med 37:358–366

    CAS  PubMed  Google Scholar 

  • Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863

    CAS  PubMed  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    CAS  PubMed  Google Scholar 

  • Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    CAS  PubMed  Google Scholar 

  • Buser JR, Segovia KN, Dean JM, Nelson K, Beardsley D, Gong X, Luo NL, Ren J, Wan Y, Riddle A, McClure MM, Ji X, Derrick M, Hohimer AR, Back SA, Tan S (2010) Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J Cereb Blood Flow Metab 30:1053–1065

    PubMed  Google Scholar 

  • Buser JR, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, Luo NL, Ren J, Struve J, Sherman LS, Miller SP, Chau V, Hendson G, Ballabh P, Grafe MR, Back SA (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71:93–109

    PubMed  Google Scholar 

  • Capdevila JH, Falck JR (2002) Biochemical and molecular properties of the cytochrome P450 arachidonic acid monooxygenases. Prostaglandins Other Lipid Mediat 68–69:325–344

    PubMed  Google Scholar 

  • Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ (2012) Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 219:192–203

    CAS  PubMed  Google Scholar 

  • Chen W, Mahadomrongkul V, Berger UV, Bassan M, DeSilva T, Tanaka K, Irwin N, Aoki C, Rosenberg PA (2004) The glutamate transporter GLT1a is expressed in excitatory axon terminals of mature hippocampal neurons. J Neurosci 24:1136–1148

    CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    CAS  PubMed  Google Scholar 

  • Craig A, Ling Luo N, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181:231–240

    PubMed  Google Scholar 

  • Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A, Baehring JM, Shimazaki H, Koide R, King D, Mason W, Sansing LH, Dichter MA, Rosenfeld MR, Lynch DR (2007) Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 61:25–36

    CAS  PubMed  Google Scholar 

  • Dammann O, Leviton A (2004) Inflammatory brain damage in preterm newborns–dry numbers, wet lab, and causal inferences. Early Hum Dev 79:1–15

    PubMed  Google Scholar 

  • Dammann O, Hagberg H, Leviton A (2001) Is periventricular leukomalacia an axonopathy as well as an oligopathy? Pediatr Res 49:453–457

    CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  • Darnell RB, Posner JB (2006) Paraneoplastic syndromes affecting the nervous system. Semin Oncol 33:270–298

    PubMed  Google Scholar 

  • Dean JM, Moravec MD, Grafe M, Abend N, Ren J, Gong X, Volpe JJ, Jensen FE, Hohimer AR, Back SA (2011) Strain-specific differences in perinatal rodent oligodendrocyte lineage progression and its correlation with human. Dev Neurosci 33:251–260

    CAS  PubMed  Google Scholar 

  • Degterev A, Maki JL, Yuan J (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20:366

    CAS  PubMed  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    CAS  PubMed  Google Scholar 

  • Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378–390

    CAS  PubMed  Google Scholar 

  • Deng W, Rosenberg PA, Volpe JJ, Jensen FE (2003) Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci U S A 100:6801–6806

    CAS  PubMed  Google Scholar 

  • Deng W, Wang H, Rosenberg PA, Volpe JJ, Jensen FE (2004) Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. Proc Natl Acad Sci U S A 101:7751–7756

    CAS  PubMed  Google Scholar 

  • DeSilva TM, Kabakov AY, Goldhoff PE, Volpe JJ, Rosenberg PA (2009) Regulation of glutamate transport in developing rat oligodendrocytes. J Neurosci 29:7898–7908

    CAS  PubMed  Google Scholar 

  • Desilva TM, Borenstein NS, Volpe JJ, Kinney HC, Rosenberg PA (2012) Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol 520(17):3912–3932

    CAS  PubMed  Google Scholar 

  • DeSilva TM, Kinney HC, Borenstein NS, Trachtenberg FL, Irwin N, Volpe JJ, Rosenberg PA (2007) The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J Comp Neurol 501:879–890

    CAS  PubMed  Google Scholar 

  • DiFiglia M (1990) Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 13:286–289

    CAS  PubMed  Google Scholar 

  • Dommergues MA, Gallego J, Evrard P, Gressens P (1998) Iron supplementation aggravates periventricular cystic white matter lesions in newborn mice. Eur J Paediatr Neurol 2:313–318

    CAS  PubMed  Google Scholar 

  • Dommergues MA, Patkai J, Renauld JC, Evrard P, Gressens P (2000) Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 47:54–63

    CAS  PubMed  Google Scholar 

  • Duke DC, Moran LB, Pearce RK, Graeber MB (2007) The medial and lateral substantia nigra in Parkinson's disease: mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics 8:83–94

    CAS  PubMed  Google Scholar 

  • Elitt CM, Sadowska GB, Stopa EG, Pinar H, Petersson KH, Stonestreet BS (2003) Effects of antenatal steroids on ischemic brain injury in near-term ovine fetuses. Early Hum Dev 73:1–15

    CAS  PubMed  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    CAS  PubMed  Google Scholar 

  • Fern R, Möller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20:34–42

    CAS  PubMed  Google Scholar 

  • Filippi L et al (2012) Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI). BMC Pediatr 12:144

    CAS  PubMed  Google Scholar 

  • Follett PL, Rosenberg PA, Volpe JJ, Jensen FE (2000) NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 20:9235–9241

    CAS  PubMed  Google Scholar 

  • Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24:4412–4420

    CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    CAS  PubMed  Google Scholar 

  • Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7:3343–3349

    CAS  PubMed  Google Scholar 

  • Gilles FH, Leviton A, Kerr CS (1976) Endotoxin leucoencephalopathy in the telencephalon of the newborn kitten. J Neurol Sci 27:183–191

    CAS  PubMed  Google Scholar 

  • Gilles FH Jr, DRA DVM, Kerr CS (1977) Neonatal endotoxin encephalopathy. Ann Neurol 2:49–56

    CAS  PubMed  Google Scholar 

  • Gosztonyi G, Koprowski H (2001) The concept of neurotropism and selective vulnerability (“pathoclisis”) in virus infections of the nervous system–a historical overview. Curr Top Microbiol Immunol 253:1–13

    CAS  PubMed  Google Scholar 

  • Graus F, Dalmau J (2012) Paraneoplastic neurological syndromes. Curr Opin Neurol 25:795–801

    CAS  PubMed  Google Scholar 

  • Haynes RL, Billiards SS, Borenstein NS, Volpe JJ, Kinney HC (2008) Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 63:656–661

    CAS  PubMed  Google Scholar 

  • Haynes RL, Borenstein NS, Desilva TM, Folkerth RD, Liu LG, Volpe JJ, Kinney HC (2005) Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol 484:156–167

    PubMed  Google Scholar 

  • Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, Volpe JJ, Kinney HC (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62:441–450

    PubMed  Google Scholar 

  • Hazell AS, Butterworth RF (2009) Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation. Alcohol Alcohol 44:141–147

    CAS  PubMed  Google Scholar 

  • Hazell AS, Todd KG, Butterworth RF (1998) Mechanisms of neuronal cell death in Wernicke's encephalopathy. Metab Brain Dis 13:97–122

    CAS  PubMed  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    CAS  PubMed  Google Scholar 

  • Ho Y, Samarasinghe R, Knoch ME, Lewis M, Aizenman E, DeFranco DB (2008) Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol Pharmacol 74:1141–1151

    CAS  PubMed  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    CAS  PubMed  Google Scholar 

  • Honeycutt A, Dunlap L, CHen H, Homsi G, Grosse S, Schendel D (2004) Economic costs associated with mental retardation, cerebral plasy, hearing loss, and vision impairment–United States, 2003. Morbidity Mortality Weekly Reports 53:57–59

    Google Scholar 

  • Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. New Engl J Med 361:1570–1583

    CAS  PubMed  Google Scholar 

  • Inder T, Mocatta T, Darlow B, Spencer C, Volpe JJ, Winterbourn C (2002) Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res 52:213–218

    CAS  PubMed  Google Scholar 

  • Ishimaru H, Katoh A, Suzuki H, Fukuta T, Kameyama T, Nabeshima T (1992) Effects of N-methyl-D-aspartate receptor antagonists on carbon monoxide-induced brain damage in mice. J Pharmacol Exp Ther 261:349–352

    CAS  PubMed  Google Scholar 

  • Itoh T, Beesley J, Itoh A, Cohen AS, Kavanaugh B, Coulter DA, Grinspan JB, Pleasure D (2002) AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem 81:390–402

    CAS  PubMed  Google Scholar 

  • Jensen AA, Erichsen MN, Nielsen CW, Stensbol TB, Kehler J, Bunch L (2009) Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1. J Med Chem 52:912–915

    CAS  PubMed  Google Scholar 

  • Jhala SS, Hazell AS (2011) Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int 58:248–260

    CAS  PubMed  Google Scholar 

  • Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, van Leyen K (2008) Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39:2538–2543

    CAS  PubMed  Google Scholar 

  • Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72:536–549

    CAS  PubMed  Google Scholar 

  • Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166

    CAS  PubMed  Google Scholar 

  • Kataoka H, Dalmau J, Ueno S (2008) Paraneoplastic encephalitis associated with ovarian teratoma and N-methyl-D-aspartate receptor antibodies. Eur J Neurol 15:e5–e6

    CAS  PubMed  Google Scholar 

  • Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46:607–636

    CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  • Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161

    CAS  PubMed  Google Scholar 

  • Kim S, Dayani L, Rosenberg PA, Li J (2010) RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int J Physiol Pathophysiol Pharmacol 2:137–147

    CAS  PubMed  Google Scholar 

  • Kimelberg HK, Rutledge E, Goderie S, Charniga C (1995) Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J Cereb Blood Flow Metab 15:409–416

    CAS  PubMed  Google Scholar 

  • Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591

    CAS  PubMed  Google Scholar 

  • Kinney HC, Back SA (1998) Human oligodendroglial development: relationship to periventricular leukomalacia. Semin Pediatr Neurol 5:180–189

    CAS  PubMed  Google Scholar 

  • Kinney HC, Armstrong DD (2002) Perinatal neuropathology. In: Graham DI, Lantos PL (eds) Greenfield's neuropathology. Arnold, London, pp 519–606

    Google Scholar 

  • Kinney HC, Panigrahy A, Newburger JW, Jonas RA, Sleeper LA (2005) Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol 110:563–578

    PubMed  Google Scholar 

  • Klatzo I (2003) Cecile & Oskar Vogt: the significance of their contributions in modern neuroscience. Acta Neurochir Suppl 86:29–32

    CAS  PubMed  Google Scholar 

  • Klenchin VA, Martin TF (2000) Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie 82:399–407

    CAS  PubMed  Google Scholar 

  • Langlais PJ, Mair RG (1990) Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci 10:1664–1674

    CAS  PubMed  Google Scholar 

  • Langlais PJ, Zhang SX (1993) Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801. J Neurochem 61:2175–2182

    CAS  PubMed  Google Scholar 

  • Lee WH, Wang GM, Seaman LB, Vannucci SJ (1996) Coordinate IGF-I and IGFBP5 gene expression in perinatal rat brain after hypoxia-ischemia. J Cereb Blood Flow Metab 16:227–236

    CAS  PubMed  Google Scholar 

  • Leviton A, Kuban K, O'Shea TM, Paneth N, Fichorova R, Allred EN, Dammann O (2011) The relationship between early concentrations of 25 blood proteins and cerebral white matter injury in preterm newborns: the ELGAN study. J Pediatr 158(897–903):e891–e895

    Google Scholar 

  • Li YH, Maher P, Schubert D (1997) A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463

    CAS  PubMed  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med 330:613–622

    CAS  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    CAS  PubMed  Google Scholar 

  • Lorenz JM (2001) The outcome of extreme prematurity. Semin Perinatol 25:348–359

    CAS  PubMed  Google Scholar 

  • Malaeb S, Dammann O (2009) Fetal inflammatory response and brain injury in the preterm newborn. J Child Neurol 24:1119–1126

    PubMed  Google Scholar 

  • Mander P, Borutaite V, Moncada S, Brown GC (2005) Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res 79:208–215

    CAS  PubMed  Google Scholar 

  • Manning SM, Talos DM, Zhou C, Selip DB, Park HK, Park CJ, Volpe JJ, Jensen FE (2008) NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J Neurosci 28:6670–6678

    CAS  PubMed  Google Scholar 

  • Matute C (1998) Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve. Proc Natl Acad Sci U S A 95:10229–10234

    CAS  PubMed  Google Scholar 

  • Matute C, Sánchez-Gómez MV, Martínez-Millán L, Miledi R (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci U S A 94:8830–8835

    CAS  PubMed  Google Scholar 

  • Matute C, Alberdi E, Domercq M, Perez-Cerda F, Perez-Samartin A, Sanchez-Gomez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224–230

    CAS  PubMed  Google Scholar 

  • McClure MM, Riddle A, Manese M, Luo NL, Rorvik DA, Kelly KA, Barlow CH, Kelly JJ, Vinecore K, Roberts CT, Hohimer AR, Back SA (2008) Cerebral blood flow heterogeneity in preterm sheep: lack of physiologic support for vascular boundary zones in fetal cerebral white matter. J Cereb Blood Flow Metab 28:995–1008

    PubMed  Google Scholar 

  • McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    CAS  PubMed  Google Scholar 

  • Meredith GE, Totterdell S, Beales M, Meshul CK (2009) Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson's disease. Exp Neurol 219:334–340

    CAS  PubMed  Google Scholar 

  • Meunier FA, Osborne SL, Hammond GR, Cooke FT, Parker PJ, Domin J, Schiavo G (2005) Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16:4841–4851

    CAS  PubMed  Google Scholar 

  • Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992

    CAS  PubMed  Google Scholar 

  • Milnerwood AJ, Raymond LA (2010) Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci 33:513–523

    CAS  PubMed  Google Scholar 

  • Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660

    CAS  PubMed  Google Scholar 

  • Monyer H, Giffard RG, Hartley DM, Dugan LL, Goldberg MP, Choi DW (1992) Oxygen or glucose deprivation-induced neuronal injury in cortical cell cultures is reduced by tetanus toxin. Neuron 8:967–973

    CAS  PubMed  Google Scholar 

  • Morimoto T, Ogihara S (1996) ATP is required in platelet serotonin exocytosis for protein phosphorylation and priming of secretory vesicles docked on the plasma membrane. J Cell Sci 109(Pt 1):113–118

    CAS  PubMed  Google Scholar 

  • Mozhayeva MG, Matos MF, Liu X, Kavalali ET (2004) Minimum essential factors required for vesicle mobilization at hippocampal synapses. J Neurosci 24:1680–1688

    CAS  PubMed  Google Scholar 

  • Muller RU, Finkelstein A (1974) The electrostatic basis of Mg++ inhibition of transmitter release. Proc Natl Acad Sci U S A 71:923–926

    CAS  PubMed  Google Scholar 

  • Murphy T, Parikh A, Schnaar R, Coyle JT (1989a) Arachidonic acid metabolism in glutamate neurotoxicity. Ann N Y Acad Sci 559:474–477

    Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 4:1624–1633

    CAS  PubMed  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989b) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    CAS  PubMed  Google Scholar 

  • Ness JK, Wood TL (2002) Insulin-like growth factor I, but not neurotrophin-3, sustains Akt activation and provides long-term protection of immature oligodendrocytes from glutamate-mediated apoptosis. Mol Cell Neurosci 20:476–488

    CAS  PubMed  Google Scholar 

  • Ness JK, Mitchell NE, Wood TL (2002) IGF-I and NT-3 signaling pathways in developing oligodendrocytes: differential regulation and activation of receptors and the downstream effector Akt. Dev Neurosci 24:437–445

    CAS  PubMed  Google Scholar 

  • Ness JK, Scaduto RC Jr, Wood TL (2004) IGF-I prevents glutamate-mediated bax translocation and cytochrome C release in O4+ oligodendrocyte progenitors. Glia 46:183–194

    PubMed  Google Scholar 

  • Nicholls DG (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 4:149–177

    CAS  PubMed  Google Scholar 

  • Nicholls DG (2009) Spare respiratory capacity, oxidative stress and excitotoxicity. Biochem Soc Trans 37:1385–1388

    CAS  PubMed  Google Scholar 

  • Northington FJ, Chavez-Valdez R, Graham EM, Razdan S, Gauda EB, Martin LJ (2011) Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. J Cereb Blood Flow Metab 31:178–189

    CAS  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    CAS  PubMed  Google Scholar 

  • Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13:1441–1453

    CAS  PubMed  Google Scholar 

  • Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587:2141–2149

    CAS  PubMed  Google Scholar 

  • Olney JW, Rhee V, Ho OL (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77:507–512

    CAS  PubMed  Google Scholar 

  • Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK (2004) N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res 78:347–361

    CAS  PubMed  Google Scholar 

  • Paintlia MK, Paintlia AS, Contreras MA, Singh I, Singh AK (2008) Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: attenuation by N-acetyl cysteine. Exp Neurol 210:560–576

    CAS  PubMed  Google Scholar 

  • Pallast S, Arai K, Wang X, Lo EH, van Leyen K (2009) 12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress. J Neurochem 111:882–889

    CAS  PubMed  Google Scholar 

  • Pallast S, Arai K, Pekcec A, Yigitkanli K, Yu Z, Wang X, Lo EH, van Leyen K (2010) Increased nuclear apoptosis-inducing factor after transient focal ischemia: a 12/15-lipoxygenase-dependent organelle damage pathway. J Cereb Blood Flow Metab 30:1157–1167

    CAS  PubMed  Google Scholar 

  • Papagapiou MP, Auer RN (1990) Regional neuroprotective effects of the NMDA receptor antagonist MK-801 (dizocilpine) in hypoglycemic brain damage. J Cereb Blood Flow Metab 10:270–276

    CAS  PubMed  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    CAS  PubMed  Google Scholar 

  • Pekcec A, Yigitkanli K, Jung JE, Pallast S, Xing C, Antipenko A, Minchenko M, Nikolov DB, Holman TR, Lo EH, van Leyen K (2012) Following experimental stroke, the recovering brain is vulnerable to lipoxygenase-dependent semaphorin signaling. FASEB J 27(2):437–445

    PubMed  Google Scholar 

  • Pierson CR, Folkerth RD, Billiards SS, Trachtenberg FL, Drinkwater ME, Volpe JJ, Kinney HC (2007) Gray matter injury associated with periventricular leukomalacia in the premature infant. Acta Neuropathol 114:619–631

    PubMed  Google Scholar 

  • Pines G, Kanner BI (1990) Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from brain. Biochemistry 29:11209–11214

    CAS  PubMed  Google Scholar 

  • Piomelli D, Greengard P (1990) Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol Sci 11:367–373

    CAS  PubMed  Google Scholar 

  • Rangon CM, Fortes S, Lelievre V, Leroux P, Plaisant F, Joubert C, Lanfumey L, Cohen-Salmon C, Gressens P (2007) Chronic mild stress during gestation worsens neonatal brain lesions in mice. J Neurosci 27:7532–7540

    CAS  PubMed  Google Scholar 

  • Raymond LA, Andre VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS (2011) Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 198:252–273

    CAS  PubMed  Google Scholar 

  • Reyes RC, Brennan AM, Shen Y, Baldwin Y, Swanson RA (2012) Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes. J Neurosci 32:12973–12978

    CAS  PubMed  Google Scholar 

  • Riddle A, Luo NL, Manese M, Beardsley DJ, Green L, Rorvik DA, Kelly KA, Barlow CH, Kelly JJ, Hohimer AR, Back SA (2006) Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci 26:3045–3055

    CAS  PubMed  Google Scholar 

  • Riobó NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ (2001) Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem J 359:139–145

    PubMed  Google Scholar 

  • Rosenberg PA, Dai W, Gan XD, Ali S, Fu J, Back SA, Sanchez RM, Segal MM, Follett PL, Jensen FE, Volpe JJ (2003) Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res 71:237–245

    CAS  PubMed  Google Scholar 

  • Rothman SM (1983) Synaptic activity mediated death of hypoxic neurons. Science 220:526–527

    Google Scholar 

  • Rothman SM, Olney JW (1995) Excitotoxicity and the NMDA receptor–still lethal after eight years. Trends Neurosci 18:57–58

    CAS  PubMed  Google Scholar 

  • Rothstein JD (1995) Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin Neurosci 3:348–359

    PubMed  Google Scholar 

  • Rothstein JD (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    CAS  PubMed  Google Scholar 

  • Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    CAS  PubMed  Google Scholar 

  • Sanchez-Gomez MV, Matute C (1999) AMPA and kainate receptors each mediate excitotoxicity in oligodendroglial cultures. Neurobiol Dis 6:475–485

    CAS  PubMed  Google Scholar 

  • Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    CAS  PubMed  Google Scholar 

  • Schmidt-Kastner R (1989) The problem of selective vulnerability in neuropathology: the historical discussion between C. and O. Vogt and W. Spielmeyer as seen today (review). No shinkei geka 17:109–116

    CAS  PubMed  Google Scholar 

  • Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    CAS  PubMed  Google Scholar 

  • Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A, Craig A, Struve J, Sherman LS, Back SA (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530

    PubMed  Google Scholar 

  • Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Radmark O, Wurst W, Bornkamm GW, Schweizer U, Conrad M (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248

    CAS  PubMed  Google Scholar 

  • Sheardown M, Nielsen EO, Hansen AJ, Jacobsen P, Honore T (1990) 2,3-Dihydroxy-6-nitro-7-sufamoyl-benzo(f) quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–573

    CAS  PubMed  Google Scholar 

  • Strange K, Emma F, Jackson PS (1996) Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol 270:C711–C730

    CAS  PubMed  Google Scholar 

  • Streit WJ, Morioka T, Kalehua AN (1992) MK-801 prevents microglial reaction in rat hippocampus after forebrain ischemia. Neuroreport 3:146–148

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 47:175–182

    CAS  PubMed  Google Scholar 

  • Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    CAS  PubMed  Google Scholar 

  • Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F, Libert C, Declercq W, Callewaert N, Prendergast GC, Degterev A, Yuan J, Vandenabeele P (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437

    CAS  PubMed  Google Scholar 

  • Talos DM, Fishman RE, Park H, Folkerth RD, Follett PL, Volpe JJ, Jensen FE (2006a) Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol 497:42–60

    CAS  PubMed  Google Scholar 

  • Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ, Jensen FE (2006b) Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J Comp Neurol 497:61–77

    CAS  PubMed  Google Scholar 

  • Tan S, Schubert D, Maher P (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1:497–506

    CAS  PubMed  Google Scholar 

  • Tecoma ES, Monyer H, Goldberg MP, Choi DW (1989) Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron 2:1541–1545

    CAS  PubMed  Google Scholar 

  • Todd KG, Butterworth RF (1998) Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp Neurol 149:130–138

    CAS  PubMed  Google Scholar 

  • Tsuji M, duPlessis A, Taylor G, Crocker R, Volpe JJ (1998) Near infrared spectroscopy detects cerebral ischemia during hypotension in piglets. Pediatr Res 44:591–595

    CAS  PubMed  Google Scholar 

  • Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106:625–632

    CAS  PubMed  Google Scholar 

  • van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH (2006) Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37:3014–3018

    PubMed  Google Scholar 

  • van Leyen K, Arai K, Jin G, Kenyon V, Gerstner B, Rosenberg PA, Holman TR, Lo EH (2008) Novel lipoxygenase inhibitors as neuroprotective reagents. J Neurosci Res 86:904–909

    PubMed  Google Scholar 

  • Vandenabeele P, Grootjans S, Callewaert N, Takahashi N (2013) Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ 20:185–187

    CAS  PubMed  Google Scholar 

  • Vesce S, Bezzi P, Volterra A (1999) The active role of astrocytes in synaptic transmission. Cell Mol Life Sci 56:991–1000

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2003) Cerebral white matter injury of the premature infant-more common than you think. Pediatrics 112:176–180

    PubMed  Google Scholar 

  • Volpe JJ (2008) Neurology of the newborn, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Volpe JJ (2009a) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    PubMed  Google Scholar 

  • Volpe JJ (2009b) The encephalopathy of prematurity–brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 16:167–178

    PubMed  Google Scholar 

  • Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 29(4):423–440

    CAS  PubMed  Google Scholar 

  • Wang H, Li J, Follett PL, Zhang Y, Cotanche DA, Jensen FE, Volpe JJ, Rosenberg PA (2004) 12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes. Eur J Neurosci 20:2049–2058

    PubMed  Google Scholar 

  • Watanabe K, Hayakawa F, Okumura A (1999) Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Dev 21:361–372

    CAS  PubMed  Google Scholar 

  • Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, Kjellmer I, Mallard C (2007) Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 61:153–158

    CAS  PubMed  Google Scholar 

  • Weston MC, Schuck P, Ghosal A, Rosenmund C, Mayer ML (2006) Conformational restriction blocks glutamate receptor desensitization. Nat Struct Mol Biol 13:1120–1127

    CAS  PubMed  Google Scholar 

  • Wieloch T, Engelsen B, Westerberg E, Auer R (1985) Lesions of the glutamatergic cortico-striatal projections in the rat ameliorate hypoglycemic brain damage in the striatum. Neurosci Lett 58:25–30

    CAS  PubMed  Google Scholar 

  • Wood TL, Loladze V, Altieri S, Gangoli N, Levison SW, Brywe KG, Mallard C, Hagberg H (2007) Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage. Dev Neurosci 29:302–310

    CAS  PubMed  Google Scholar 

  • Wyllie A, Kerr J, Currie A (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–307

    CAS  PubMed  Google Scholar 

  • Xiong T, Gonzalez F, Mu DZ (2012) An overview of risk factors for poor neurodevelopmental outcome associated with prematurity. World J Pediatr 8:293–300

    PubMed  Google Scholar 

  • Yao J, Bajjalieh SM (2008) Synaptic vesicle protein 2 binds adenine nucleotides. J Biol Chem 283:20628–20634

    CAS  PubMed  Google Scholar 

  • Yigitkanli K, Pekcec A, Karatas H, Pallast S, Mandeville E, Joshi N, Smirnova N, Gazaryan I, Ratan RR, Witztum JL, Montaner J, Holman TR, Lo EH, van Leyen K (2012) Inhibition of 12/15-lipoxygenase as therapeutic strategy to treat stroke. Ann Neurol 73(1):129–135

    PubMed  Google Scholar 

  • Yonezawa M, Back SA, Gan XD, Rosenberg PA, Volpe JJ (1996) Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor. J Neurochem 67:566–573

    CAS  PubMed  Google Scholar 

  • Yoshioka A, Hardy M, Younkin DP, Grinspan JB, Stern JL, Pleasure D (1995) α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem 64:2442–2448

    CAS  PubMed  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1-beta-converting enzyme. Cell 75:641–652

    CAS  PubMed  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    CAS  PubMed  Google Scholar 

  • Zhang SX, Weilersbacher GS, Henderson SW, Corso T, Olney JW, Langlais PJ (1995) Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. J Neuropathol Exp Neurol 54:255–267

    CAS  PubMed  Google Scholar 

  • Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA (2007) Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med 13:350–355

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang H, Li J, Jiminez DA, Levitan ES, Aizenman E, Rosenberg PA (2004) Peroxynitrite induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 24(47):10616–10627

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang H, Li J, Dong L, Xu P, Chen W, Neve RL, Volpe JJ, Rosenberg PA (2006) Intracellular zinc release and ERK phosphorylation are required upstream of 12-lipoxygenase activation in peroxynitrite toxicity to mature rat oligodendrocytes. J Biol Chem 281:9460–9470

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Rosenberg M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenberg, P.A. (2014). Mechanisms Underlying the Selective Vulnerability of Developing Human White Matter. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics