CADASIL and Animal Models

  • Francesco Blasi
  • Anand Viswanathan
  • Cenk Ayata
Part of the Springer Series in Translational Stroke Research book series (SSTSR, volume 4)


Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common cause of inherited stroke and vascular dementia in young and middle-aged adults. The wide and heterogeneous clinical spectrum ranges from migraine with aura to leukoaraiosis and subcortical lacunar strokes, and mood disturbances, apathy and cognitive impairments. Since its genetic definition in early 1990s, an increasing number of clinical and experimental studies aimed to elucidate the relationship between CADASIL mutations on NOTCH3 gene and the pathology, aided by the development of transgenic mouse models expressing CADASIL mutations as experimental tools. In this chapter, we provide a brief review of animal models of CADASIL with an emphasis on neuropathological consequences including white matter disease.


Middle Cerebral Artery Occlusion Migraine With Aura Spreading Depression Notch3 Gene Lacunar Stroke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Blood–brain barrier


Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy


Cerebral blood flow


Cerebrovascular resistance


Epidermal growth factor


Middle cerebral artery occlusion


Notch3 knockout


Notch3 extracellular domain


Notch3 intracellular domain


Peri-infarct depolarization


Spreading depression


Small vessel disease


Wild type



 This work was supported by the National Institutes of Health (NS055104, NS061505, NS33335), Leducq Foundation (2012D000293), Neuroendovascular Research Fund from the Andrew David Heitman Foundation, and The Ellison Foundation.


  1. Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, Frosch MP, Rodriguez-Falcon M, Villen J, Gygi S, Lopera F, Kalimo H, Moskowitz MA, Ayata C, Louvi A, Artavanis-Tsakonas S (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci U S A 108(21):E128–E135PubMedCrossRefGoogle Scholar
  2. Arboleda-Velasquez JF, Zhou Z, Shin HK, Louvi A, Kim HH, Savitz SI, Liao JK, Salomone S, Ayata C, Moskowitz MA, Artavanis-Tsakonas S (2008) Linking Notch signaling to ischemic stroke. Proc Natl Acad Sci U S A 105(12):4856–4861PubMedCrossRefGoogle Scholar
  3. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561. doi: 10.1038/nature09522 PubMedCrossRefGoogle Scholar
  4. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776PubMedCrossRefGoogle Scholar
  5. Auer DP, Putz B, Gossl C, Elbel G, Gasser T, Dichgans M (2001) Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison. Radiology 218(2):443–451PubMedCrossRefGoogle Scholar
  6. Ayata C (2010a) CADASIL: experimental insights from animal models. Stroke 41(10 Suppl): S129–S134PubMedCrossRefGoogle Scholar
  7. Ayata C (2010b) Cortical spreading depression triggers migraine attack: pro. Headache 50(4): 725–730. doi: 10.1111/j.1526-4610.2010.01647.x PubMedCrossRefGoogle Scholar
  8. Baudrimont M, Dubas F, Joutel A, Tournier-Lasserve E, Bousser MG (1993) Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study. Stroke 24(1):122–125PubMedCrossRefGoogle Scholar
  9. Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646. doi: 10.1007/s00018-009-8668-7 PubMedCrossRefGoogle Scholar
  10. Bousser M, Tournier-Lasserve E (2001) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: from stroke to vessel wall physiology. J Neurol Neurosurg Psychiatry 70(3):285–287PubMedCrossRefGoogle Scholar
  11. Bruening R, Dichgans M, Berchtenbreiter C, Yousry T, Seelos KC, Wu RH, Mayer M, Brix G, Reiser M (2001) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: decrease in regional cerebral blood volume in hyperintense subcortical lesions inversely correlates with disability and cognitive performance. AJNR Am J Neuroradiol 22(7):1268–1274PubMedGoogle Scholar
  12. Brulin P, Godfraind C, Leteurtre E, Ruchoux MM (2002) Morphometric analysis of ultrastructural vascular changes in CADASIL: analysis of 50 skin biopsy specimens and pathogenic implications. Acta Neuropathol 104(3):241–248. doi: 10.1007/s00401-002-0530-z PubMedGoogle Scholar
  13. Buffon F, Porcher R, Hernandez K, Kurtz A, Pointeau S, Vahedi K, Bousser MG, Chabriat H (2006) Cognitive profile in CADASIL. J Neurol Neurosurg Psychiatry 77(2):175–180. doi: 10.1136/jnnp.2005.068726, 77/2/175 [pii]PubMedCrossRefGoogle Scholar
  14. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol 8(7):643–653PubMedCrossRefGoogle Scholar
  15. Chabriat H, Levy C, Taillia H, Iba-Zizen MT, Vahedi K, Joutel A, Tournier-Lasserve E, Bousser MG (1998) Patterns of MRI lesions in CADASIL. Neurology 51(2):452–457PubMedCrossRefGoogle Scholar
  16. Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K, Jobert A, Le Bihan D, Bousser MG (2000) Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke 31(8):1904–1912PubMedCrossRefGoogle Scholar
  17. Chabriat H, Pappata S, Poupon C, Clark CA, Vahedi K, Poupon F, Mangin JF, Pachot-Clouard M, Jobert A, Le Bihan D, Bousser MG (1999) Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI. Stroke 30(12): 2637–2643PubMedCrossRefGoogle Scholar
  18. Chabriat H, Vahedi K, Iba-Zizen MT, Joutel A, Nibbio A, Nagy TG, Krebs MO, Julien J, Dubois B, Ducrocq X et al (1995) Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet 346(8980):934–939PubMedCrossRefGoogle Scholar
  19. Coto E, Menendez M, Navarro R, Garcia-Castro M, Alvarez V (2006) A new de novo Notch3 mutation causing CADASIL. Eur J Neurol 13(6):628–631. doi: 10.1111/j.1468-1331.2006. 01337.x, ENE1337 [pii]PubMedCrossRefGoogle Scholar
  20. Cumurciuc R, Guichard JP, Reizine D, Gray F, Bousser MG, Chabriat H (2006) Dilation of Virchow–Robin spaces in CADASIL. Eur J Neurol 13(2):187–190. doi: 10.1111/j.1468- 1331.2006.01113.x PubMedCrossRefGoogle Scholar
  21. D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27(38):5148–5167. doi: 10.1038/onc.2008.229, onc2008229 [pii]PubMedCrossRefGoogle Scholar
  22. Desmond DW, Moroney JT, Lynch T, Chan S, Chin SS, Mohr JP (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30(6):1230–1233PubMedCrossRefGoogle Scholar
  23. Dichgans M, Holtmannspotter M, Herzog J, Peters N, Bergmann M, Yousry TA (2002) Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 33(1):67–71PubMedCrossRefGoogle Scholar
  24. Dichgans M, Ludwig H, Muller-Hocker J, Messerschmidt A, Gasser T (2000) Small in-frame deletions and missense mutations in CADASIL: 3D models predict misfolding of Notch3 EGF-like repeat domains. Eur J Hum Genet 8(4):280–285. doi: 10.1038/sj.ejhg.5200460 PubMedCrossRefGoogle Scholar
  25. Dichgans M, Markus HS, Salloway S, Verkkoniemi A, Moline M, Wang Q, Posner H, Chabriat HS (2008) Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol 7(4):310–318. doi: 10.1016/S1474-4422(08)70046-2 PubMedCrossRefGoogle Scholar
  26. Dichgans M, Mayer M, Uttner I, Bruning R, Muller-Hocker J, Rungger G, Ebke M, Klockgether T, Gasser T (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44(5):731–739. doi: 10.1002/ana.410440506 PubMedCrossRefGoogle Scholar
  27. Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735. doi: 10.1101/gad.308904, 18/22/2730 [pii]PubMedCrossRefGoogle Scholar
  28. Donahue CP, Kosik KS (2004) Distribution pattern of Notch3 mutations suggests a gain-of-function mechanism for CADASIL. Genomics 83(1):59–65. doi: S0888754303002064 [pii] PubMedCrossRefGoogle Scholar
  29. Dubroca C, Lacombe P, Domenga V, Maciazek J, Levy B, Tournier-Lasserve E, Joutel A, Henrion D (2005) Impaired vascular mechanotransduction in a transgenic mouse model of CADASIL arteriopathy. Stroke 36(1):113–117PubMedCrossRefGoogle Scholar
  30. Duering M, Gonik M, Malik R, Zieren N, Reyes S, Jouvent E, Herve D, Gschwendtner A, Opherk C, Chabriat H, Dichgans M (2012) Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. Neuroimage 66C:177–183. doi: 10.1016/j.neuroimage.2012.10.084 PubMedGoogle Scholar
  31. Eikermann-Haerter K, Yuzawa I, Dilekoz E, Joutel A, Moskowitz MA, Ayata C (2011) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression. Ann Neurol 69(2):413–418PubMedCrossRefGoogle Scholar
  32. Gobron C, Viswanathan A, Bousser MG, Chabriat H (2006) Multiple simultaneous cerebral infarctions in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Cerebrovasc Dis 22(5–6):445–446. doi: 10.1159/000095287 PubMedCrossRefGoogle Scholar
  33. Herve D, Mangin JF, Molko N, Bousser MG, Chabriat H (2005) Shape and volume of lacunar infarcts: a 3D MRI study in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 36(11):2384–2388. doi: 10.1161/01.STR.0000185678.26296.38 PubMedCrossRefGoogle Scholar
  34. Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N (2006) Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol 112(3):333–339. doi: 10.1007/s00401-006-0116-2 PubMedCrossRefGoogle Scholar
  35. Iso T, Hamamori Y, Kedes L (2003a) Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 23(4):543–553. doi: 10.1161/01.ATV.0000060892.81529.8F, 01.ATV.0000060892. 81529.8F [pii]PubMedCrossRefGoogle Scholar
  36. Iso T, Kedes L, Hamamori Y (2003b) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194(3):237–255. doi: 10.1002/jcp.10208 PubMedCrossRefGoogle Scholar
  37. Joutel A (2011) Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays 33(1):73–80. doi: 10.1002/bies.201000093 PubMedCrossRefGoogle Scholar
  38. Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105(5):597–605. doi: 10.1172/JCI8047 PubMedCrossRefGoogle Scholar
  39. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383(6602):707–710. doi: 10.1038/383707a0 PubMedCrossRefGoogle Scholar
  40. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1997a) Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia. Ann N Y Acad Sci 826:213–217PubMedCrossRefGoogle Scholar
  41. Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 120(2):433–445PubMedCrossRefGoogle Scholar
  42. Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssiere C, Cruaud C, Maciazek J, Weissenbach J, Bousser MG, Bach JF, Tournier-Lasserve E (1997b) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350(9090):1511–1515. doi: 10.1016/S0140-6736(97)08083-5, S0140-6736(97)08083-5 [pii]PubMedCrossRefGoogle Scholar
  43. Jouvent E, Mangin JF, Duchesnay E, Porcher R, During M, Mewald Y, Guichard JP, Herve D, Reyes S, Zieren N, Dichgans M, Chabriat H (2012) Longitudinal changes of cortical morphology in CADASIL. Neurobiol Aging 33(5):1002.e29–e36. doi: 10.1016/j.neurobiolaging. 2011.09.013 CrossRefGoogle Scholar
  44. Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A (2005) Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36(5):1053–1058. doi: 10.1161/01.STR.0000163080.82766.eb PubMedCrossRefGoogle Scholar
  45. Lee JH, Bacskai BJ, Ayata C (2012) Genetic animal models of cerebral vasculopathies. Prog Mol Biol Transl Sci 105:25–55. doi: 10.1016/B978-0-12-394596-9.00002-0 PubMedCrossRefGoogle Scholar
  46. Liem MK, Lesnik Oberstein SA, Vollebregt MJ, Middelkoop HA, van der Grond J, Helderman-van den Enden AT (2008) Homozygosity for a NOTCH3 mutation in a 65-year-old CADASIL patient with mild symptoms: a family report. J Neurol 255(12):1978–1980. doi: 10.1007/s00415-009-0036-x PubMedCrossRefGoogle Scholar
  47. Liem MK, Oberstein SA, van der Grond J, Ferrari MD, Haan J (2010) CADASIL and migraine: a narrative review. Cephalalgia 30(11):1284–1289PubMedCrossRefGoogle Scholar
  48. Lundkvist J, Zhu S, Hansson EM, Schweinhardt P, Miao Q, Beatus P, Dannaeus K, Karlstrom H, Johansson CB, Viitanen M, Rozell B, Spenger C, Mohammed A, Kalimo H, Lendahl U (2005) Mice carrying a R142C Notch 3 knock-in mutation do not develop a CADASIL-like phenotype. Genesis 41(1):13–22. doi: 10.1002/gene.20091 PubMedCrossRefGoogle Scholar
  49. Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, Powell JF (2002) Diagnostic strategies in CADASIL. Neurology 59(8):1134–1138PubMedCrossRefGoogle Scholar
  50. Miao Q, Paloneva T, Tuominen S, Poyhonen M, Tuisku S, Viitanen M, Kalimo H (2004) Fibrosis and stenosis of the long penetrating cerebral arteries: the cause of the white matter pathology in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Pathol 14(4):358–364PubMedCrossRefGoogle Scholar
  51. Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, Tournier-Lasserve E, Cohen-Tannoudji M, Chabriat H, Joutel A (2009) Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain 132(Pt 6): 1601–1612PubMedCrossRefGoogle Scholar
  52. Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A (2007) The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 16(8):982–992. doi: 10.1093/hmg/ddm042 PubMedCrossRefGoogle Scholar
  53. Muqtadar H, Testai FD (2012) Single gene disorders associated with stroke: a review and update on treatment options. Curr Treat Options Cardiovasc Med 14(3):288–297. doi: 10.1007/s11936-012-0179-4 PubMedCrossRefGoogle Scholar
  54. O’Sullivan M, Jarosz JM, Martin RJ, Deasy N, Powell JF, Markus HS (2001) MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 56(5): 628–634PubMedCrossRefGoogle Scholar
  55. Okeda R, Arima K, Kawai M (2002) Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case. Stroke 33(11):2565–2569PubMedCrossRefGoogle Scholar
  56. Opherk C, Duering M, Peters N, Karpinska A, Rosner S, Schneider E, Bader B, Giese A, Dichgans M (2009) CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum Mol Genet 18(15):2761–2767. doi: 10.1093/hmg/ddp211, ddp211 [pii]PubMedCrossRefGoogle Scholar
  57. Peters N, Herzog J, Opherk C, Dichgans M (2004) A two-year clinical follow-up study in 80 CADASIL subjects: progression patterns and implications for clinical trials. Stroke 35(7): 1603–1608. doi: 10.1161/01.STR.0000131546.71733.f1, 01.STR.0000131546.71733.f1 [pii]PubMedCrossRefGoogle Scholar
  58. Reyes S, Viswanathan A, Godin O, Dufouil C, Benisty S, Hernandez K, Kurtz A, Jouvent E, O’Sullivan M, Czernecki V, Bousser MG, Dichgans M, Chabriat H (2009) Apathy: a major symptom in CADASIL. Neurology 72(10):905–910. doi: 10.1212/01.wnl.0000344166.03470.f8 PubMedCrossRefGoogle Scholar
  59. Roy B, Maksemous N, Smith RA, Menon S, Davies G, Griffiths LR (2012) Two novel mutations and a previously unreported intronic polymorphism in the NOTCH3 gene. Mutat Res 732(1–2): 3–8. doi: 10.1016/j.mrfmmm.2012.02.004, S0027-5107(12)00044-9 [pii]PubMedCrossRefGoogle Scholar
  60. Ruchoux MM, Brulin P, Brillault J, Dehouck MP, Cecchelli R, Bataillard M (2002) Lessons from CADASIL. Ann N Y Acad Sci 977:224–231PubMedCrossRefGoogle Scholar
  61. Ruchoux MM, Chabriat H, Bousser MG, Baudrimont M, Tournier-Lasserve E (1994) Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 25(11):2291–2292PubMedCrossRefGoogle Scholar
  62. Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo JP, Vermersch P, Leys D (1995) Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol 89(6):500–512PubMedCrossRefGoogle Scholar
  63. Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, Ihara M, Takahashi R, Tomimoto H (2007) Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38(10):2826–2832. doi: 10.1161/STROKEAHA.107.490151 PubMedCrossRefGoogle Scholar
  64. Sozmen EG, Kolekar A, Havton LA, Carmichael ST (2009) A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Methods 180(2): 261–272. doi: 10.1016/j.jneumeth.2009.03.017 PubMedCrossRefGoogle Scholar
  65. Spinner NB (2000) CADASIL: Notch signaling defect or protein accumulation problem? J Clin Invest 105(5):561–562. doi: 10.1172/JCI9511 PubMedCrossRefGoogle Scholar
  66. Taheri S, Gasparovic C, Huisa BN, Adair JC, Edmonds E, Prestopnik J, Grossetete M, Shah NJ, Wills J, Qualls C, Rosenberg GA (2011) Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42(8):2158–2163. doi: 10.1161/STROKEAHA. 110.611731 PubMedCrossRefGoogle Scholar
  67. Tikka S, Mykkanen K, Ruchoux MM, Bergholm R, Junna M, Poyhonen M, Yki-Jarvinen H, Joutel A, Viitanen M, Baumann M, Kalimo H (2009) Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain 132(Pt 4):933–939PubMedGoogle Scholar
  68. Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, Mas JL, Cabanis EA, Baudrimont M, Maciazek J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3(3):256–259PubMedCrossRefGoogle Scholar
  69. Tuominen S, Miao Q, Kurki T, Tuisku S, Poyhonen M, Kalimo H, Viitanen M, Sipila HT, Bergman J, Rinne JO (2004) Positron emission tomography examination of cerebral blood flow and glucose metabolism in young CADASIL patients. Stroke 35(5):1063–1067. doi: 10.1161/01.STR.0000124124.69842.2d, 01.STR.0000124124.69842.2d [pii]PubMedCrossRefGoogle Scholar
  70. Van Bogaert L (1955) Encephalopathie sous-corticale progressive (Binswanger) a evolution rapide chez deux soeurs. Med Hellen 24:961–972Google Scholar
  71. van den Boom R, Lesnik Oberstein SA, Ferrari MD, Haan J, van Buchem MA (2003) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages–3rd-6th decades. Radiology 229(3):683–690. doi: 10.1148/radiol.2293021354 PubMedCrossRefGoogle Scholar
  72. Viswanathan A, Godin O, Jouvent E, O’Sullivan M, Gschwendtner A, Peters N, Duering M, Guichard JP, Holtmannspotter M, Dufouil C, Pachai C, Bousser MG, Dichgans M, Chabriat H (2010) Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. Neurobiol Aging 31(9):1629–1636. doi: 10.1016/j.neurobiolaging.2008.09.001 PubMedCrossRefGoogle Scholar
  73. Viswanathan A, Gray F, Bousser MG, Baudrimont M, Chabriat H (2006a) Cortical neuronal apoptosis in CADASIL. Stroke 37(11):2690–2695PubMedCrossRefGoogle Scholar
  74. Viswanathan A, Gschwendtner A, Guichard JP, Buffon F, Cumurciuc R, O’Sullivan M, Holtmannspotter M, Pachai C, Bousser MG, Dichgans M, Chabriat H (2007) Lacunar lesions are independently associated with disability and cognitive impairment in CADASIL. Neurology 69(2):172–179. doi: 10.1212/01.wnl.0000265221.05610.70, 69/2/172 [pii]PubMedCrossRefGoogle Scholar
  75. Viswanathan A, Guichard JP, Gschwendtner A, Buffon F, Cumurcuic R, Boutron C, Vicaut E, Holtmannspotter M, Pachai C, Bousser MG, Dichgans M, Chabriat H (2006b) Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain 129(Pt 9):2375–2383. doi: 10.1093/brain/awl177 PubMedCrossRefGoogle Scholar
  76. Wallays G, Nuyens D, Silasi-Mansat R, Souffreau J, Callaerts-Vegh Z, Van Nuffelen A, Moons L, D’Hooge R, Lupu F, Carmeliet P, Collen D, Dewerchin M (2011) Notch3 Arg170Cys knock-in mice display pathologic and clinical features of the neurovascular disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Arterioscler Thromb Vasc Biol 31(12):2881–2888. doi: 10.1161/ATVBAHA.111.237859, ATVBAHA.111.237859 [pii]PubMedCrossRefGoogle Scholar
  77. Wardlaw JM, Sandercock PA, Dennis MS, Starr J (2003) Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34(3):806–812. doi: 10.1161/01.STR.0000058480.77236.B3 PubMedCrossRefGoogle Scholar
  78. Yamamoto Y, Ihara M, Tham C, Low RW, Slade JY, Moss T, Oakley AE, Polvikoski T, Kalaria RN (2009) Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke 40(6):2004–2011. doi: 10.1161/STROKEAHA.108.528299, STROKEAHA. 108.528299 [pii]PubMedCrossRefGoogle Scholar
  79. Yoshizaki K, Adachi K, Kataoka S, Watanabe A, Tabira T, Takahashi K, Wakita H (2008) Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol 210(2): 585–591. doi: 10.1016/j.expneurol.2007.12.005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Francesco Blasi
    • 1
  • Anand Viswanathan
    • 2
  • Cenk Ayata
    • 3
    • 4
  1. 1.Neurovascular Research Laboratory, Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUSA
  2. 2.Stroke Research CenterMassachusetts General HospitalBostonUSA
  3. 3.Neurovascular Research Laboratory, Department of RadiologyMassachusetts General HospitalCharlestownUSA
  4. 4.Stroke Service and Neuroscience Intensive Care Unit, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations