Skip to main content

White Matter Injury After Experimental Intracerebral Hemorrhage

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 4))

Abstract

Of the three stroke subtypes, spontaneous intracerebral hemorrhage (ICH) has the highest death rate and the poorest prognosis in survivors. Indeed, half of ICH patients die and only 10–20 % return to normal activities of daily living. Although the incidence of spontaneous ICH is estimated at ~10–15 % of all strokes, approximately 2 million patients are affected yearly worldwide. Besides spontaneous ICH, intracerebral bleeds also occur following treatment with thrombolytic agents for ischemic stroke and myocardial infarction. At present, there are no approved pharmacologic or generally accepted surgical treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APP:

Amyloid precursor protein

BBB:

Blood–brain barrier

CNS:

Central nervous system

GFAP:

Glial fibrillary acidic protein

H&E:

Hematoxylin and eosin

HO-1:

Heme oxygenase-1

ICAM-1:

Intracellular adhesion molecule-1

IL-1:

Interleukin-1

ICH:

Intracerebral hemorrhage

LFB:

Luxol fast blue

MAPK:

Mitogen-activated protein kinases

MCP-1:

Monocyte chemoattractant protein

MRI:

Magnetic resonance imaging

MMPs:

Matrix metalloproteinases

NF-kappaB:

Nuclear factor-kappaB

NOS:

Nitric oxide synthase

Nrf2:

Nuclear factor (erythroid-derived 2)-like factor 2

PPARgamma:

Peroxisome proliferator-activated receptor-gamma

ROS:

Reactive oxygen species

PARs:

Proteinase-activated receptors

STICH:

Surgical trial in intracerebral hemorrhage

TBI:

Traumatic brain injury

TNF-alpha:

Tumor necrosis factor-alpha

TUNEL:

Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine (dUTP)-biotin nick end labeling

References

  • Adams RA, Passino M, Sachs BD, Nuriel T, Akassoglou K (2004) Fibrin mechanisms and functions in nervous system pathology. Mol Interv 4:163–176

    CAS  PubMed  Google Scholar 

  • Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K (2007) The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204:571–582

    CAS  PubMed  Google Scholar 

  • Adeoye O, Clark JF, Khatri P, Wagner KR, Zuccarello M, Pyne-Geithman GJ (2011) Animal models of hemorrhagic stroke: do current models mirror the human pathologies? Transl Stroke Res 2:17–25

    Google Scholar 

  • Akassoglou K, Strickland S (2002) Nervous system pathology: the fibrin perspective. Biol Chem 383:37–45

    CAS  PubMed  Google Scholar 

  • Akassoglou K, Kombrinck K, Degen J, Strickland S (2000) Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after nerve injury. J Cell Biol 149:1157–1166

    CAS  PubMed  Google Scholar 

  • Akassoglou K, Yu WM, Akpinar P, Strickland S (2002) Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron 33:861–875

    CAS  PubMed  Google Scholar 

  • Andaluz N, Zuccarello M, Wagner KR (2002) Experimental animal models of intracerebral hemorrhage. Neurosurg Clin N Am 13:385–393

    PubMed  Google Scholar 

  • Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R, Sharp FR (2004) Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke 35:2587–2591

    CAS  PubMed  Google Scholar 

  • Aronowski J, Hall CE (2005) New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res 27:268–279

    PubMed  Google Scholar 

  • Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42:1781–1786

    PubMed  Google Scholar 

  • Auriat AM, Silasi G, Wei Z, Paquette R, Paterson P, Nichol H, Colbourne F (2012) Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome. Exp Neurol 234:136–143

    CAS  PubMed  Google Scholar 

  • Babu R, Bagley JH, Di C, Friedman AH, Adamson C (2012) Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 32:E8

    PubMed  Google Scholar 

  • Baeuerle PA (1998) Pro-inflammatory signaling: last pieces in the NF-kappaB puzzle? Curr Biol 8:R19–R22

    CAS  PubMed  Google Scholar 

  • Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    CAS  PubMed  Google Scholar 

  • Belayev L, Saul I, Busto R, Danielyan K, Vigdorchik A, Khoutorova L, Ginsberg MD (2005) Albumin treatment reduces neurological deficit and protects blood–brain barrier integrity after acute intracortical hematoma in the rat. Stroke 36:326–331

    CAS  PubMed  Google Scholar 

  • Berger AK (2003) Thrombolysis in elderly patients with acute myocardial infarction. Am J Geriatr Cardiol 12:251–256

    PubMed  Google Scholar 

  • Broderick JP (2005) The STICH trial: what does it tell us and where do we go from here? Stroke 36:1619–1620

    PubMed  Google Scholar 

  • Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G (1993) Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 24:987–993

    CAS  PubMed  Google Scholar 

  • Brouwers HB, Goldstein JN (2012) Therapeutic strategies in acute intracerebral hemorrhage. Neurotherapeutics 9:87–98

    CAS  PubMed  Google Scholar 

  • Brown MS, Kornfeld M, Mun-Bryce S, Sibbitt RR, Rosenberg GA (1995) Comparison of magnetic resonance imaging and histology in collagenase-induced hemorrhage in the rat. J Neuroimaging 5:23–33

    CAS  PubMed  Google Scholar 

  • Butcher KS, Baird T, MacGregor L, Desmond P, Tress B, Davis S (2004) Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke 35:1879–1885

    PubMed  Google Scholar 

  • Castillo J, Davalos A, Alvarez-Sabin J, Pumar JM, Leira R, Silva Y, Montaner J, Kase CS (2002) Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 58:624–629

    CAS  PubMed  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    CAS  PubMed  Google Scholar 

  • Chiang MF, Chiu WT, Lin FJ, Thajeb P, Huang CJ, Tsai SH (2006) Multiparametric analysis of cerebral substrates and nitric oxide delivery in cerebrospinal fluid in patients with intracerebral haemorrhage: correlation with hemodynamics and outcome. Acta Neurochir (Wien) 148:615–621, dicussion 621

    Google Scholar 

  • Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 34:43–62

    CAS  PubMed  Google Scholar 

  • Del Bigio MR, Yan HJ, Buist R, Peeling J (1996) Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke 27:2312–2319

    PubMed  Google Scholar 

  • del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA (2007) Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 38:646–651

    PubMed  Google Scholar 

  • Denk A, Wirth T, Baumann B (2000) NF-kappaB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev 11:303–320

    CAS  PubMed  Google Scholar 

  • Enzmann DR, Britt RH, Lyons BE, Buxton JL, Wilson DA (1981) Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. AJNR Am J Neuroradiol 2:517–526

    CAS  PubMed  Google Scholar 

  • Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27

    CAS  PubMed  Google Scholar 

  • Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T (2012) Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc Dis 34:249–262

    CAS  PubMed  Google Scholar 

  • Folsom AR, Yatsuya H, Mosley TH Jr, Psaty BM, Longstreth WT Jr (2012) Risk of intraparenchymal hemorrhage with magnetic resonance imaging-defined leukoaraiosis and brain infarcts. Ann Neurol 71:552–559

    PubMed  Google Scholar 

  • Foulkes MA, Wolf PA, Price TR, Mohr JP, Hier DB (1988) The Stroke Data Bank: design, methods, and baseline characteristics. Stroke 19:547–554

    CAS  PubMed  Google Scholar 

  • Frantzias J, Sena ES, Macleod MR, Al-Shahi Salman R (2011) Treatment of intracerebral hemorrhage in animal models: meta-analysis. Ann Neurol 69:389–399

    CAS  PubMed  Google Scholar 

  • Fukui K, Iguchi I, Kito A, Watanabe Y, Sugita K (1994) Extent of pontine pyramidal tract Wallerian degeneration and outcome after supratentorial hemorrhagic stroke. Stroke 25:1207–1210

    CAS  PubMed  Google Scholar 

  • Garcia JH, Ho KL, Caccamo DV (1994) Intracerebral hemorrhage: pathology of selected topics. In: Kase CS, Caplan LR (eds) Intracerebral hemorrhage. Butterworth-Heinemann, Boston, MA, pp 45–72

    Google Scholar 

  • Gebel JM, Brott TG, Sila CA, Tomsick TA, Jauch E, Salisbury S, Khoury J, Miller R, Pancioli A, Duldner JE et al (2000) Decreased perihematomal edema in thrombolysis-related intracerebral hemorrhage compared with spontaneous intracerebral hemorrhage. Stroke 31:596–600

    CAS  PubMed  Google Scholar 

  • Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW (1993) Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett 160:139–144

    CAS  PubMed  Google Scholar 

  • Gong C, Hoff JT, Keep RF (2000) Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 871:57–65

    CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    CAS  PubMed  Google Scholar 

  • Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G (2009) Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 40:2241–2243

    CAS  PubMed  Google Scholar 

  • Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 121:367–387

    CAS  Google Scholar 

  • Harari OA, Liao JK (2010) NF-kappaB and innate immunity in ischemic stroke. Ann N Y Acad Sci 1207:32–40

    CAS  PubMed  Google Scholar 

  • Herweh C, Juttler E, Schellinger PD, Klotz E, Jenetzky E, Orakcioglu B, Sartor K, Schramm P (2007) Evidence against a perihemorrhagic penumbra provided by perfusion computed tomography. Stroke 38:2941–2947

    PubMed  Google Scholar 

  • Herweh C, Juttler E, Schellinger PD, Klotz E, Schramm P (2010) Perfusion CT in hyperacute cerebral hemorrhage within 3 h after symptom onset: is there an early perihemorrhagic penumbra? J Neuroimaging 20:350–353

    PubMed  Google Scholar 

  • Hickenbottom SL, Grotta JC, Strong R, Denner LA, Aronowski J (1999) Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke 30:2472–2477

    CAS  PubMed  Google Scholar 

  • Holmin S, Mathiesen T (2000) Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg 92:108–120

    CAS  PubMed  Google Scholar 

  • Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G (2006) Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 58:542–550

    PubMed  Google Scholar 

  • Hua Y, Keep RF, Hoff JT, Xi G (2007) Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke 38:759–762

    CAS  PubMed  Google Scholar 

  • Hua Y, Keep RF, Hoff JT, Xi G (2008) Deferoxamine therapy for intracerebral hemorrhage. Acta Neurochir Suppl 105:3–6

    CAS  PubMed  Google Scholar 

  • Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293

    PubMed  Google Scholar 

  • Hwang BY, Appelboom G, Ayer A, Kellner CP, Kotchetkov IS, Gigante PR, Haque R, Kellner M, Connolly ES (2011) Advances in neuroprotective strategies: potential therapies for intracerebral hemorrhage. Cerebrovasc Dis 31:211–222

    PubMed  Google Scholar 

  • James ML, Warner DS, Laskowitz DT (2008) Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 9:139–152

    PubMed  Google Scholar 

  • Jenkins A, Maxwell WL, Graham DI (1989) Experimental intracerebral haematoma in the rat: sequential light microscopical changes. Neuropathol Appl Neurobiol 15:477–486

    CAS  PubMed  Google Scholar 

  • Jenkins A, Mendelow AD, Graham DI, Nath FP, Teasdale GM (1990) Experimental intracerebral haematoma: the role of blood constituents in early ischaemia. Br J Neurosurg 4:45–51

    CAS  PubMed  Google Scholar 

  • Karin M, Takahashi T, Kapahi P, Delhase M, Chen Y, Makris C, Rothwarf D, Baud V, Natoli G, Guido F et al (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15:87–89

    CAS  PubMed  Google Scholar 

  • Kase CS, Caplan LR (1994) Intracerebral hemorrhage. Butterworth-Heinemann, Newton, MA

    Google Scholar 

  • Katsuki H (2010) Exploring neuroprotective drug therapies for intracerebral hemorrhage. J Pharmacol Sci 114:366–378

    CAS  PubMed  Google Scholar 

  • Kaufman HH, Schochet SS (1992) Pathology, pathophysiology and modeling. In: Kaufman HH (ed) Intracerebral hematomas: etiology, pathophysiology, clinical presentation and treatment. Raven, New York, pp 13–20

    Google Scholar 

  • Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM (2004) The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab 24:945–963

    CAS  PubMed  Google Scholar 

  • Kazui S, Kuriyama Y, Sawada T, Imakita S (1994) Very early demonstration of secondary pyramidal tract degeneration by computed tomography. Stroke 25:2287–2289

    CAS  PubMed  Google Scholar 

  • Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    CAS  PubMed  Google Scholar 

  • Kimelberg HK (1995) Current concepts of brain edema. Review of laboratory investigations. J Neurosurg 83:1051–1059

    CAS  PubMed  Google Scholar 

  • Kirkman MA, Allan SM, Parry-Jones AR (2011) Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab 31:2135–2151

    PubMed  Google Scholar 

  • Koeppen AH, Dickson AC, Smith J (2004) Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin. J Neuropathol Exp Neurol 63:587–597

    CAS  PubMed  Google Scholar 

  • Kollmar R, Staykov D, Dorfler A, Schellinger PD, Schwab S, Bardutzky J (2010) Hypothermia reduces perihemorrhagic edema after intracerebral hemorrhage. Stroke 41:1684–1689

    PubMed  Google Scholar 

  • Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 87:1561–1565

    CAS  PubMed  Google Scholar 

  • Koyama T, Tsuji M, Nishimura H, Miyake H, Ohmura T, Domen K (2011) Diffusion tensor imaging for intracerebral hemorrhage outcome prediction: comparison using data from the corona radiata/internal capsule and the cerebral peduncle. J Stroke Cerebrovasc Dis 22:72–79

    Google Scholar 

  • Kuzu Y, Inoue T, Kanbara Y, Nishimoto H, Fujiwara S, Ogasawara K, Ogawa A (2012) Prediction of motor function outcome after intracerebral hemorrhage using fractional anisotropy calculated from diffusion tensor imaging. Cerebrovasc Dis 33:566–573

    PubMed  Google Scholar 

  • Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT (1996) Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg 84:91–96

    CAS  PubMed  Google Scholar 

  • Leira R, Davalos A, Silva Y, Gil-Peralta A, Tejada J, Garcia M, Castillo J, Stroke Project, C.D.G.o.t.S.N.S (2004) Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology 63:461–467

    CAS  PubMed  Google Scholar 

  • Lekic T, Rolland W, Hartman R, Kamper J, Suzuki H, Tang J, Zhang JH (2011) Characterization of the brain injury, neurobehavioral profiles, and histopathology in a rat model of cerebellar hemorrhage. Exp Neurol 227:96–103

    PubMed  Google Scholar 

  • Lekic T, Rolland W, Manaenko A, Krafft PR, Kamper JE, Suzuki H, Hartman RE, Tang J, Zhang JH (2013) Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg 118:465–477

    PubMed  Google Scholar 

  • Leonardo CC, Robbins S, Dore S (2012) Translating basic science research to clinical application: models and strategies for intracerebral hemorrhage. Front Neurol 3:85

    PubMed  Google Scholar 

  • Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 9:46

    CAS  PubMed  Google Scholar 

  • Lippitz BE, Mayfrank L, Spetzger U, Warnke JP, Bertalanffy H, Gilsbach JM (1994) Lysis of basal ganglia haematoma with recombinant tissue plasminogen activator (rtPA) after stereotactic aspiration: initial results. Acta Neurochir (Wien) 127:157–160

    CAS  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    CAS  PubMed  Google Scholar 

  • Lisk DR, Pasteur W, Rhoades H, Putnam RD, Grotta JC (1994) Early presentation of hemispheric intracerebral hemorrhage: prediction of outcome and guidelines for treatment allocation. Neurology 44:133–139

    CAS  PubMed  Google Scholar 

  • Liu DZ, Sharp FR (2011) The dual role of SRC kinases in intracerebral hemorrhage. Acta Neurochir Suppl 111:77–81

    PubMed  Google Scholar 

  • Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, Sharp FR (2010) Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol 67:526–533

    CAS  PubMed  Google Scholar 

  • Lively S, Schlichter LC (2012a) Age-related comparisons of evolution of the inflammatory response after intracerebral hemorrhage in rats. Transl Stroke Res 3:132–146

    CAS  PubMed  Google Scholar 

  • Lively S, Schlichter LC (2012b) SC1/hevin identifies early white matter injury after ischemia and intracerebral hemorrhage in young and aged rats. J Neuropathol Exp Neurol 71:480–493

    PubMed  Google Scholar 

  • Lunardi P (2012) Lobar hemorrhages. Front Neurol Neurosci 30:145–148

    PubMed  Google Scholar 

  • MacLellan CL, Girgis J, Colbourne F (2004) Delayed onset of prolonged hypothermia improves outcome after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 24:432–440

    PubMed  Google Scholar 

  • MacLellan CL, Davies LM, Fingas MS, Colbourne F (2006) The influence of hypothermia on outcome after intracerebral hemorrhage in rats. Stroke 37:1266–1270

    PubMed  Google Scholar 

  • MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, Colbourne F (2008) Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab 28:516–525

    CAS  PubMed  Google Scholar 

  • MacLellan CL, Silasi G, Auriat AM, Colbourne F (2010) Rodent models of intracerebral hemorrhage. Stroke 41:S95–S98

    PubMed  Google Scholar 

  • MacLellan CL, Paquette R, Colbourne F (2012) A critical appraisal of experimental intracerebral hemorrhage research. J Cereb Blood Flow Metab 32:612–627

    PubMed  Google Scholar 

  • Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF (2001) Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg 95:680–686

    CAS  PubMed  Google Scholar 

  • Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF, Nagao S (2003) Overexpression of interleukin-1 receptor antagonist reduces brain edema induced by intracerebral hemorrhage and thrombin. Acta Neurochir Suppl 86:463–467

    CAS  PubMed  Google Scholar 

  • Masuda T, Hida H, Kanda Y, Aihara N, Ohta K, Yamada K, Nishino H (2007) Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat. J Neurosci Res 85:213–222

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Hondo H (1984) CT-guided stereotaxic evacuation of hypertensive intracerebral hematomas. J Neurosurg 61:440–448

    CAS  PubMed  Google Scholar 

  • Mattson MP, Meffert MK (2006) Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 13:852–860

    CAS  PubMed  Google Scholar 

  • Mattson MP, Culmsee C, Yu Z, Camandola S (2000) Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 74:443–456

    CAS  PubMed  Google Scholar 

  • Matute C, Ransom BR (2012) Roles of white matter in central nervous system pathophysiologies. ASN Neuro 4:89–101

    Google Scholar 

  • Mayer SA, Sacco RL, Shi T, Mohr JP (1994) Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology 44:1379–1384

    CAS  PubMed  Google Scholar 

  • Mayne M, Ni W, Yan HJ, Xue M, Johnston JB, Del Bigio MR, Peeling J, Power C (2001a) Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke 32:240–248

    CAS  PubMed  Google Scholar 

  • Mayne M, Fotheringham J, Yan HJ, Power C, Del Bigio MR, Peeling J, Geiger JD (2001b) Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann Neurol 49:727–735

    CAS  PubMed  Google Scholar 

  • Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–530

    CAS  PubMed  Google Scholar 

  • Mendelow AD, Unterberg A (2007) Surgical treatment of intracerebral haemorrhage. Curr Opin Crit Care 13:169–174

    PubMed  Google Scholar 

  • Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, Karimi A, Shaw MD, Barer DH (2005) Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet 365:387–397

    PubMed  Google Scholar 

  • Miller CM, Vespa PM, McArthur DL, Hirt D, Etchepare M (2007) Frameless stereotactic aspiration and thrombolysis of deep intracerebral hemorrhage is associated with reduced levels of extracellular cerebral glutamate and unchanged lactate pyruvate ratios. Neurocrit Care 6:22–29

    CAS  PubMed  Google Scholar 

  • Mohadjer M, Braus DF, Myers A, Scheremet R, Krauss JK (1992) CT-stereotactic fibrinolysis of spontaneous intracerebral hematomas. Neurosurg Rev 15:105–110

    CAS  PubMed  Google Scholar 

  • Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA et al (2013) Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke 44:627–634

    CAS  PubMed  Google Scholar 

  • Moxon-Emre I, Schlichter LC (2011) Neutrophil depletion reduces blood–brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol 70:218–235

    CAS  PubMed  Google Scholar 

  • Mun-Bryce S, Wilkerson AC, Papuashvili N, Okada YC (2001) Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine. Brain Res 888:248–255

    CAS  PubMed  Google Scholar 

  • Mun-Bryce S, Roberts LJ, Hunt WC, Bartolo A, Okada Y (2004a) Acute changes in cortical excitability in the cortex contralateral to focal intracerebral hemorrhage in the swine. Brain Res 1026:218–226

    CAS  PubMed  Google Scholar 

  • Mun-Bryce S, Wilkerson A, Pacheco B, Zhang T, Rai S, Wang Y, Okada Y (2004b) Depressed cortical excitability and elevated matrix metalloproteinases in remote brain regions following intracerebral hemorrhage. Brain Res 1026:227–234

    CAS  PubMed  Google Scholar 

  • Murakami K, Kawase M, Kondo T, Chan PH (1998) Cellular accumulation of extravasated serum protein and DNA fragmentation following vasogenic edema. J Neurotrauma 15:825–835

    CAS  PubMed  Google Scholar 

  • Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G (2004) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg 100:672–678

    CAS  PubMed  Google Scholar 

  • Nakamura T, Xi G, Park JW, Hua Y, Hoff JT, Keep RF (2005) Holo-transferrin and thrombin can interact to cause brain damage. Stroke 36:348–352

    CAS  PubMed  Google Scholar 

  • Nath FP, Jenkins A, Mendelow AD, Graham DI, Teasdale GM (1986) Early hemodynamic changes in experimental intracerebral hemorrhage. J Neurosurg 65:697–703

    CAS  PubMed  Google Scholar 

  • Nath FP, Kelly PT, Jenkins A, Mendelow AD, Graham DI, Teasdale GM (1987) Effects of experimental intracerebral hemorrhage on blood flow, capillary permeability, and histochemistry. J Neurosurg 66:555–562

    CAS  PubMed  Google Scholar 

  • O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 34:185–204

    PubMed  Google Scholar 

  • Otsuka N, Tomonaga M, Ikeda K (1991) Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res 568:335–338

    CAS  PubMed  Google Scholar 

  • Participants NIW (2005) Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 36:e23–e41

    Google Scholar 

  • Pizzi M, Spano P (2006) Distinct roles of diverse nuclear factor-kappaB complexes in neuropathological mechanisms. Eur J Pharmacol 545:22–28

    CAS  PubMed  Google Scholar 

  • Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731–742

    CAS  PubMed  Google Scholar 

  • Powers WJ, Zazulia AR, Videen TO, Adams RE, Yundt KD, Aiyagari V, Grubb RL Jr, Diringer MN (2001) Autoregulation of cerebral blood flow surrounding acute (6–22 h) intracerebral hemorrhage. Neurology 57:18–24

    CAS  PubMed  Google Scholar 

  • Prabhakaran S, Naidech AM (2012) Ischemic brain injury after intracerebral hemorrhage: a critical review. Stroke 43:2258–2263

    PubMed  Google Scholar 

  • Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN (1999) Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci 19:4023–4033

    CAS  PubMed  Google Scholar 

  • Qureshi AI, Wilson DA, Hanley DF, Traystman RJ (1999) No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology 52:266–272

    CAS  PubMed  Google Scholar 

  • Qureshi AI, Ali Z, Suri MF, Shuaib A, Baker G, Todd K, Guterman LR, Hopkins LN (2003) Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit Care Med 31:1482–1489

    CAS  PubMed  Google Scholar 

  • Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373:1632–1644

    PubMed  Google Scholar 

  • Ransom BR, Baltan SB (2009) Axons get excited to death. Ann Neurol 65:120–121

    PubMed  Google Scholar 

  • Richmon JD, Fukuda K, Maida N, Sato M, Bergeron M, Sharp FR, Panter S, Noble LJ (1998) Induction of heme oxygenase-1 after hyperosmotic opening of blood–brain barrier. Br Res 780:108–118

    CAS  Google Scholar 

  • Rodriguez-Yanez M, Brea D, Arias S, Blanco M, Pumar JM, Castillo J, Sobrino T (2012) Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage. J Neuroimmunol 247:75–80

    CAS  PubMed  Google Scholar 

  • Rohde V, Schaller C, Hassler WE (1995) Intraventricular recombinant tissue plasminogen activator for lysis of intraventricular haemorrhage. J Neurol Neurosurg Psychiatry 58:447–451

    CAS  PubMed  Google Scholar 

  • Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    PubMed  Google Scholar 

  • Rosenberg, G.A., and Mun-Bryce, S. 2004. Matrix metalloproteinases in neuroinflammation and cerebral ischemia. Ernst. Schering. Res Found. Workshop:1-16.

    Google Scholar 

  • Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M (1990) Collagenase-induced intracerebral hemorrhage in rats. Stroke 21:801–807

    CAS  PubMed  Google Scholar 

  • Rosenberg GA, Estrada E, Kelley RO, Kornfeld M (1993) Bacterial collagenase disrupts extracellular matrix and opens blood–brain barrier in rat. Neurosci Lett 160:117–119

    CAS  PubMed  Google Scholar 

  • Rothwell NJ (1999) Annual review prize lecture cytokines: killers in the brain? J Physiol 514:3–17

    CAS  PubMed  Google Scholar 

  • Rothwell N, Allan S, Toulmond S (1997) The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest 100:2648–2652

    CAS  PubMed  Google Scholar 

  • Ryu JK, Davalos D, Akassoglou K (2009) Fibrinogen signal transduction in the nervous system. J Thromb Haemost 7(Suppl 1):151–154

    CAS  PubMed  Google Scholar 

  • Sangha N, Gonzales NR (2011) Treatment targets in intracerebral hemorrhage. Neurotherapeutics 8:374–387

    PubMed  Google Scholar 

  • Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K (2010) Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci 30:5843–5854

    CAS  PubMed  Google Scholar 

  • Schaller C, Rohde V, Meyer B, Hassler W (1995) Stereotactic puncture and lysis of spontaneous intracerebral hemorrhage using recombinant tissue-plasminogen activator. Neurosurg 36:328–333

    CAS  Google Scholar 

  • Selim M (2009) Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke 40:S90–S91

    CAS  PubMed  Google Scholar 

  • Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, Schlaug G, Torbey M, Waldman B, Xi G et al (2011) Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke 42:3067–3074

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Annu Rev Cell Biol 10:373–403

    CAS  PubMed  Google Scholar 

  • Selmaj KW, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23:339–346

    CAS  PubMed  Google Scholar 

  • Sharp FR, Lu A, Tang Y, Millhorn DE (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20:1011–1032

    CAS  PubMed  Google Scholar 

  • Sherriff FE, Bridges LR, Sivaloganathan S (1994) Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathol 87:55–62

    CAS  PubMed  Google Scholar 

  • Shoamanesh A, Kwok CS, Lim PA, Benavente OR (2013) Postthrombolysis intracranial hemorrhage risk of cerebral microbleeds in acute stroke patients: a systematic review and meta-analysis. Int J Stroke 8:348–356

    Google Scholar 

  • Si QS, Nakamura Y, Kataoka K (1997) Albumin enhances superoxide production in cultured microglia. Glia 21:413–418

    CAS  PubMed  Google Scholar 

  • Sinar EJ, Mendelow AD, Graham DI, Teasdale GM (1987) Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg 66:568–576

    CAS  PubMed  Google Scholar 

  • Song S, Hua Y, Keep RF, Hoff JT, Xi G (2007) A new hippocampal model for examining intracerebral hemorrhage-related neuronal death: effects of deferoxamine on hemoglobin-induced neuronal death. Stroke 38:2861–2863

    PubMed  Google Scholar 

  • Song S, Hua Y, Keep RF, He Y, Wang J, Wu J, Xi G (2008) Deferoxamine reduces brain swelling in a rat model of hippocampal intracerebral hemorrhage. Acta Neurochir Suppl 105:13–18

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    CAS  PubMed  Google Scholar 

  • Stephenson DT, Rash K, Clemens JA (1992) Amyloid precursor protein accumulates in regions of neurodegeneration following focal cerebral ischemia in the rat. Brain Res 593:128–135

    CAS  PubMed  Google Scholar 

  • Stephenson D, Yin T, Smalstig EB, Hsu MA, Panetta J, Little S, Clemens J (2000) Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia. J Cereb Blood Flow Metab 20:592–603

    CAS  PubMed  Google Scholar 

  • Stys PK, Lipton SA (2007) White matter NMDA receptors: an unexpected new therapeutic target? Trends Pharmacol Sci 28:561–566

    CAS  PubMed  Google Scholar 

  • Tejima E, Zhao BQ, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, Montaner J, Wang X, Lo EH (2007) Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 27:460–468

    CAS  PubMed  Google Scholar 

  • Teng W, Wang L, Xue W, Guan C (2009) Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediators Inflamm 2009:473276

    PubMed  Google Scholar 

  • Thiex R, Kuker W, Muller HD, Rohde I, Schroder JM, Gilsbach JM, Rohde V (2003) The long-term effect of recombinant tissue-plasminogen-activator (rt-PA) on edema formation in a large-animal model of intracerebral hemorrhage. Neurol Res 25:254–262

    CAS  PubMed  Google Scholar 

  • Toffol GJ, Biller J, Adams HP Jr (1987) Nontraumatic intracerebral hemorrhage in young adults. Arch Neurol 44:483–485

    CAS  PubMed  Google Scholar 

  • Van Wagoner NJ, Benveniste EN (1999) Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 100:124–139

    PubMed  Google Scholar 

  • Wagner KR (2007) Modeling intracerebral hemorrhage: Glutamate, nuclear factor-kappa B signaling and cytokines. Stroke 38:753–758

    CAS  PubMed  Google Scholar 

  • Wagner KR, Broderick JP (2001) Hemorrhagic stroke: pathophysiological mechanisms and neuroprotective treatments. In: Lo EH, Marwah J (eds) Neuroprotection. Prominent Press, Scottsdale, pp 471–508

    Google Scholar 

  • Wagner KR, Brott TG (2007) Animal models of intracerebral hemorrhage. In: Bhardwaj A, Alkayed N, Kirsch J, Traystman R (eds) Acute stroke: bench to bedside. Informa, New York, pp 111–121

    Google Scholar 

  • Wagner KR, Dwyer BE (2004) Hematoma removal, heme, and heme oxygenase following hemorrhagic stroke. Ann N Y Acad Sci 1012:237–251

    CAS  PubMed  Google Scholar 

  • Wagner KR, Zuccarello M (2005) Focal brain hypothermia for neuroprotection in stroke treatment and aneurysm repair. Neurol Res 27(3):238–245

    PubMed  Google Scholar 

  • Wagner KR, Zuccarello M (2009) Intracerebral hemorrhage: animal models and experimental treatments. In: Carhuapoma JR, Mayer SA, Hanley DF (eds) Textbook of intracerebral hemorrhage. Cambridge University Press, New York, pp 193–205

    Google Scholar 

  • Wagner KR, Xi G, Hua Y, Kleinholz M, De C, Myers RE, Broderick JP, Brott TG (1996) Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke 27:490–497

    CAS  PubMed  Google Scholar 

  • Wagner KR, Hua Y, Xi G, Dunn RS, Holland SK, Hall NC, Samuel SJ, Williams PM, de Courten-Myers GM, Brott TG et al (1997) Pathophysiologic mechanisms underlying edema development in experimental intracerebral hemorrhage: magnetic resonance studies. Stroke 28:264

    Google Scholar 

  • Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE (1998) Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg 88:1058–1065

    CAS  PubMed  Google Scholar 

  • Wagner KR, Xi G, Hua Y, Zuccarello M, de Courten-Myers GM, Broderick JP, Brott TG (1999a) Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: edema reduction and blood–brain barrier protection. J Neurosurg 90:491–498

    CAS  PubMed  Google Scholar 

  • Wagner KR, Bryan DW, Hall CL, de Courten-Myers GM, Broderick JP (1999b) White matter injury after intracerebral hemorrhage: infused plasma but not red blood cells induces early DNA fragmentation. J Cereb Blood Flow Metab 19(Suppl 1):S55

    Google Scholar 

  • Wagner KR, Hua Y, Hall NC, de Courten-Myers GM (1999c) Induction of tumor necrosis factor-alpha in perihematomal edematous white matter following experimental intracerebral hemorrhage. Soc Neurosci Abs 25:1849

    Google Scholar 

  • Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY, Dwyer BE (2000) Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cell Mol Biol (Noisy-le-grand) 46:597–608

    CAS  Google Scholar 

  • Wagner KR, Knight J, Packard BA, de Courten-Myers GM, Smulian AG, Broderick JP (2001) Rapid nuclear factor kappaB activation and cytokine and heme oxygenase-1 gene expression in edematous white matter after porcine intracerebral hemorrhage. Stroke 32:327

    Google Scholar 

  • Wagner KR, Packard BA, Hall CL, Smulian AG, Linke MJ, De C, Packard LM, Hall NC (2002) Protein oxidation and heme oxygenase-1 induction in porcine white matter following intracerebral infusions of whole blood or plasma. Dev Neurosci 24:154–160

    CAS  PubMed  Google Scholar 

  • Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003a) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629–652

    CAS  PubMed  Google Scholar 

  • Wagner KR, Dean C, Beiler S, Knight J, Packard BA, Hall CL, de Courten-Myers GM (2003b) Rapid activation of pro-inflammatory signaling cascades in perihematomal brain regions in a porcine white matter intracerebral hemorrhage model. J Cereb Blood Flow Metab 23(Suppl 1):277

    Google Scholar 

  • Wagner KR, Beiler S, Dean C, Hall CL, Knight J, Packard BA, Smulian AG, Linke MJ, de Courten-Myers GM (2004) NF k B activation and pro-inflammatory cytokine gene upregulation in white matter following porcine intracerebral hemorrhage. In: Krieglstein J, Klumpp S (eds) Pharmacology of cerebral ischemia 2004. Medpharm Scientific Publishers, Stuttgart, pp 185–194

    Google Scholar 

  • Wagner KR, Dean C, Beiler S, Bryan DW, Packard BA, Smulian AG, Linke MJ, de Courten-Myers GM (2005) Plasma infusions into porcine cerebral white matter induce early edema, oxidative stress, pro-inflammatory cytokine gene expression and DNA fragmentation: implications for white matter injury with increased blood–brain-barrier permeability. Curr Neurovasc Res 2:149–155

    CAS  PubMed  Google Scholar 

  • Wagner KR, Beiler S, Beiler C, Kirkman J, Casey K, Robinson T, Larnard D, de Courten-Myers GM, Linke MJ, Zuccarello M (2006) Delayed profound local brain hypothermia markedly reduces interleukin-1beta gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochir Suppl 96:177–182

    CAS  PubMed  Google Scholar 

  • Wan S, Hua Y, Keep RF, Hoff JT, Xi G (2006) Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl 96:199–202

    CAS  PubMed  Google Scholar 

  • Wan S, Zhan R, Zheng S, Hua Y, Xi G (2008) Activation of c-Jun-N-terminal kinase in a rat model of intracerebral hemorrhage: the role of iron. Neurosci Res 63(2):100–105

    PubMed  Google Scholar 

  • Wang J (2010) Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 92:463–477

    CAS  PubMed  Google Scholar 

  • Wang J, Dore S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    CAS  PubMed  Google Scholar 

  • Wang J, Tsirka SE (2005) Tuftsin fragment 1–3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke 36:613–618

    CAS  PubMed  Google Scholar 

  • Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, Dixon CE, Fini ME, Lo EH (2000) Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci 20:7037–7042

    CAS  PubMed  Google Scholar 

  • Wang J, Rogove AD, Tsirka AE, Tsirka SE (2003) Protective role of tuftsin fragment 1–3 in an animal model of intracerebral hemorrhage. Ann Neurol 54:655–664

    CAS  PubMed  Google Scholar 

  • Warkentin LM, Auriat AM, Wowk S, Colbourne F (2010) Failure of deferoxamine, an iron chelator, to improve outcome after collagenase-induced intracerebral hemorrhage in rats. Brain Res 1309:95–103

    CAS  PubMed  Google Scholar 

  • Wasserman JK, Schlichter LC (2007a) Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol 207:227–237

    CAS  PubMed  Google Scholar 

  • Wasserman JK, Schlichter LC (2007b) Neuron death and inflammation in a rat model of intracerebral hemorrhage: effects of delayed minocycline treatment. Brain Res 1136:208–218

    CAS  PubMed  Google Scholar 

  • Wasserman JK, Schlichter LC (2008) White matter injury in young and aged rats after intracerebral hemorrhage. Exp Neurol 214:266–275

    PubMed  Google Scholar 

  • Wasserman JK, Zhu X, Schlichter LC (2007) Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res 1180:140–154

    CAS  PubMed  Google Scholar 

  • Wasserman JK, Yang H, Schlichter LC (2008) Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats. Eur J Neurosci 28:1316–1328

    PubMed  Google Scholar 

  • Weller RO (1992) Spontaneous intracranial hemorrhage. In: Adams Jh DLW (ed) Greenfield’s neuropathology. Oxford Univ Press, New York, pp 269–301

    Google Scholar 

  • Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA (2010) Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol Aging 31:747–757

    CAS  PubMed  Google Scholar 

  • Wu J, Hua Y, Keep RF, Schallert T, Hoff JT, Xi G (2002) Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res 953:45–52

    CAS  PubMed  Google Scholar 

  • Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, Hua Y (2008) Microglial activation and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl 105:59–65

    CAS  PubMed  Google Scholar 

  • Wu H, Cong Y, Wang D, Zhao R, Qi J (2009) Correlation of macrophage inflammatory protein-2 expression and brain edema in rats after intracerebral hemorrhage. Int J Clin Exp Pathol 2:83–90

    PubMed  Google Scholar 

  • Wu H, Wu T, Li M, Wang J (2012) Efficacy of the lipid-soluble iron chelator 2,2′-dipyridyl against hemorrhagic brain injury. Neurobiol Dis 45:388–394

    CAS  PubMed  Google Scholar 

  • Xi G, Wagner KR, Keep RF, Hua Y, De C, Broderick JP, Brott TG, Hoff JT, Muizelaar JP (1998) Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke 29:2580–2586

    CAS  PubMed  Google Scholar 

  • Xi G, Keep RF, Hoff JT (2002) Pathophysiology of brain edema formation. Neurosurg Clin N Am 13:371–383

    PubMed  Google Scholar 

  • Xue M, Del Bigio MR (2000) Intracortical hemorrhage injury in rats: relationship between blood fractions and brain cell death. Stroke 31:1721–1727

    CAS  PubMed  Google Scholar 

  • Xue M, Del Bigio MR (2001) Acute tissue damage after injections of thrombin and plasmin into rat striatum. Stroke 32:2164–2169

    CAS  PubMed  Google Scholar 

  • Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT (1994) Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg 81:93–102

    CAS  PubMed  Google Scholar 

  • Yao Y, Tsirka SE (2012) The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 60:908–918

    PubMed  Google Scholar 

  • Yenari MA, Han HS (2006) Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NFkappaB). Neurochem Int 49:164–169

    CAS  PubMed  Google Scholar 

  • Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A 97:5621–5626

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Immunolocalization of Toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 19:10–19

    PubMed  Google Scholar 

  • Zhao X, Ou Z, Grotta JC, Waxham N, Aronowski J (2006) Peroxisome-proliferator-activated receptor-gamma (PPARgamma) activation protects neurons from NMDA excitotoxicity. Brain Res 1073–1074:460–469

    PubMed  Google Scholar 

  • Zhao X, Zhang Y, Strong R, Zhang J, Grotta JC, Aronowski J (2007a) Distinct patterns of intracerebral hemorrhage-induced alterations in NF-kappaB subunit, iNOS, and COX-2 expression. J Neurochem 101:652–663

    CAS  PubMed  Google Scholar 

  • Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007b) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38:3280–3286

    CAS  PubMed  Google Scholar 

  • Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, Aronowski J (2007c) Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 61:352–362

    CAS  PubMed  Google Scholar 

  • Zhao X, Grotta J, Gonzales N, Aronowski J (2009) Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 40:S92–S94

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies from the author’s laboratory that are described in this review were supported by National Institutes of Health grant R01NS30652 and funds from the Office of Research and Development, Medical Research Service, Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Wagner Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagner, K.R. (2014). White Matter Injury After Experimental Intracerebral Hemorrhage. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics