Skip to main content

Computational Aspects of Maximum Likelihood DOA Estimation of Two Targets with Applications to Automotive Radar

  • Chapter
  • First Online:
Smart Mobile In-Vehicle Systems

Abstract

Direction-of-arrival (DOA) estimation of two targets with a single snapshot plays an important role in many practically relevant scenarios in automotive radar for driver assistance systems. Conventional Fourier-based methods cannot resolve closely spaced targets, and high-resolution methods are required. Thus, we consider the maximum likelihood DOA estimator, which is applicable with a single snapshot. To reduce the computational burden, we propose a grid search procedure with a simplified objective function. The required projection operators are pre-calculated off-line and stored. To save storage space, we further propose a rotational shift of the field of view such that the relevant angular sector, which has to be evaluated, is centered with respect to the broadside. The final estimates are obtained using a quadratic interpolation. An example is presented to demonstrate the proposed method. Also, results obtained with experimental data from a typical application in automotive radar are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Hansen, P. Boyraz, K. Takeda, H. Abut, Digital Signal Processing for In-Vehicle Systems and Safety (Springer, New York, 2011)

    Google Scholar 

  2. F. Gustaffson, Automotive safety systems. IEEE Signal Process. Mag. 26(4), 32–47 (2009)

    Article  Google Scholar 

  3. H. Winner, S. Hakuli, G. Wolf, Advanced Driver Assistance Systems Handbook (Vieweg + Teubner, Wiesbaden, 2009) (in German: Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort)

    Google Scholar 

  4. M. Skolnik, Radar Handbook (McGraw-Hill, New York, 2008)

    Google Scholar 

  5. M. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, New York, 2005)

    Google Scholar 

  6. M. Wintermantel, Radar system with improved angle formation, Germany Patent Application WO 2010/000252, 2010

    Google Scholar 

  7. H. Krim, M. Viberg, Two decades of array signal processing research. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  8. H. van Trees, Detection, Estimation, and Modulation Theory—Part IV Optimum Array Processing (Wiley, New York, 2002)

    Book  Google Scholar 

  9. E. Tuncer, B. Friedlander, Classical and Modern Direction-of-Arrival Estimation (Academic Press, New York, 2009)

    Google Scholar 

  10. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  11. M. Haardt, J. Nossek, Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden. IEEE Trans. Signal Process. 43(5), 1232–1242 (1995)

    Article  Google Scholar 

  12. G. Golub, C. van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore, MD, 1996)

    MATH  Google Scholar 

  13. S. Pillai, C. Kwon, Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 37(1), 8–15 (1989)

    Article  MATH  Google Scholar 

  14. P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and the cramér-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 37(5), 720–741 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Abramovich, B. Johnson, X. Mestre, Performance breakdown in MUSIC, G-MUSIC and maximum likelihood estimation, in Proc. of the 32nd IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), Honolulu, USA, 2007

    Google Scholar 

  16. I. Ziskind, M. Wax, Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 36(10), 1553–1560 (1988)

    Article  MATH  Google Scholar 

  17. J. Li, D. Zheng, P. Stoica, Angle and waveform estimation via RELAX. IEEE Trans. Aerosp. Electron. Syst. 33(3), 1077–1087 (1997)

    Article  Google Scholar 

  18. B. Ottersten, M. Viberg, P. Stoica, A. Nehorai, Exact and large sample ML techniques for parameter estimation and detection in array processing, in Radar Array Processing (Springer, Berin, 1993)

    Google Scholar 

  19. P. Heidenreich, Antenna Array Processing: Autocalibration and Fast High-Resolution Methods for Automotive Radar, Ph.D. thesis, Technische Universität Darmstadt, 2012

    Google Scholar 

  20. A. Lee, Centrohermitian and skew-centrohermitian matrices. Linear Algebra Appl. 29, 205–210 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Pesavento, A. Gershman, M. Haardt, Unitary root-MUSIC with a real-valued eigendecomposition: a theoretical and experimental performance study. IEEE Trans. Signal Process. 49(5), 1306–1314 (2000)

    Article  Google Scholar 

  22. P. Heidenreich, A. Zoubir, Computationally simple DOA estimation of two resolved targets with a single snapshot, in Proc. of the 37th IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), Kyoto, Japan, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Heidenreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heidenreich, P., Zoubir, A.M. (2014). Computational Aspects of Maximum Likelihood DOA Estimation of Two Targets with Applications to Automotive Radar. In: Schmidt, G., Abut, H., Takeda, K., Hansen, J. (eds) Smart Mobile In-Vehicle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9120-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9120-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9119-4

  • Online ISBN: 978-1-4614-9120-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics