Reservoir Control Strategies for Leishmaniasis: Past, Present, and Future



Visceral leishmaniasis (VL) caused by Leishmania spp. is zoonotic. In many regions dogs serve as the predominant domestic reservoir of disease. This reservoir status has led to multiple efforts to control disease via reservoir control. Historically, public health-oriented strategies have focused on dog culling. Canine culling was established in Palestine in the 1940s and both China and former central republics of the Soviet Union in the 1950s. In these instances, with ample public health infrastructure funded by a centralized state, along with ability to use widespread spraying of DDT, VL transmission was halted but disease was not eradicated in any instance. Canine culling continues to be the predominant policy for VL control in Brazil, despite limited effectiveness. In well-developed countries of Europe with long average life expectancy and overall good health care, education, and nutrition, VL is predominantly found in immunocompromised patients. This is in spite of concurrently high levels of canine VL (cVL) in the same geographic locale. Similar trends are beginning to be seen in areas of rapid economic advancement within Brazil, demonstrating the importance of general health and environmental conditions in prevention of VL. As palatability for widespread canine culling wanes within areas endemic for cVL, combined alternate approaches including topical insecticides, reproductive control, and vaccination should be strongly considered.


Canine Culling Reproductive control Topical insecticides Leishmania Zoonotic 


  1. Alexander B, Barros VC et al (2009) Susceptibility to chemical insecticides of two Brazilian populations of the visceral leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae). Trop Med Int Health 14(10):1272–1277PubMedCrossRefGoogle Scholar
  2. Alvar J, Canavate C et al (1997) Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 10(2):298–319PubMedCentralPubMedGoogle Scholar
  3. Alvar J, Velez ID et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671PubMedCentralPubMedCrossRefGoogle Scholar
  4. Amro A, Schonian G et al (2009) Population genetics of Leishmania infantum in Israel and the Palestinian Authority through microsatellite analysis. Microbes Infect 11(4):484–492PubMedCrossRefGoogle Scholar
  5. Aresu L, Valenza F et al (2007) Membranoproliferative glomerulonephritis type III in a simultaneous infection of Leishmania infantum and Dirofilaria immitis in a dog. J Vet Diagn Invest 19(5):569–572PubMedCrossRefGoogle Scholar
  6. Barreto ML, Teixeira MG et al (2011) Successes and failures in the control of infectious diseases in Brazil: social and environmental context, policies, interventions, and research needs. Lancet 377(9780):1877–1889PubMedCrossRefGoogle Scholar
  7. Boggiatto PM, Gibson-Corley KN et al (2011) Transplacental transmission of Leishmania infantum as a means for continued disease incidence in North America. PLoS Negl Trop Dis 5(4):e1019PubMedCentralPubMedCrossRefGoogle Scholar
  8. Borja-Cabrera GP, Correia Pontes NN et al (2002) Long lasting protection against canine kala-azar using the FML-QuilA saponin vaccine in an endemic area of Brazil (Sao Goncalo do Amarante, RN). Vaccine 20(27–28):3277–3284PubMedCrossRefGoogle Scholar
  9. Cortese L, Terrazzano G et al (2011) Prevalence of anti-platelet antibodies in dogs naturally co-infected by Leishmania infantum and Ehrlichia canis. Vet J 188(1):118–121PubMedCrossRefGoogle Scholar
  10. Costa CH (2011) How effective is dog culling in controlling zoonotic visceral leishmaniasis? A critical evaluation of the science, politics and ethics behind this public health policy. Rev Soc Bras Med Trop 44(2):232–242PubMedCrossRefGoogle Scholar
  11. Coura-Vital W, Marques MJ et al (2011) Prevalence and factors associated with Leishmania infantum infection of dogs from an urban area of Brazil as identified by molecular methods. PLoS Negl Trop Dis 5(8):e1291PubMedCentralPubMedCrossRefGoogle Scholar
  12. Courtenay O, Kovacic V et al (2009) A long-lasting topical deltamethrin treatment to protect dogs against visceral leishmaniasis. Med Vet Entomol 23(3):245–256PubMedCrossRefGoogle Scholar
  13. da Silva VO, Borja-Cabrera GP et al (2000) A phase III trial of efficacy of the FML-vaccine against canine kala-azar in an endemic area of Brazil (Sao Goncalo do Amaranto, RN). Vaccine 19(9–10):1082–1092PubMedGoogle Scholar
  14. Dantas-Torres F (2006) Leishmune vaccine: the newest tool for prevention and control of canine visceral leishmaniosis and its potential as a transmission-blocking vaccine. Vet Parasitol 141(1–2):1–8PubMedCrossRefGoogle Scholar
  15. Dantas-Torres F, Solano-Gallego L et al (2012) Canine leishmaniosis in the Old and New Worlds: unveiled similarities and differences. Trends Parasitol 28(12):531–538PubMedCrossRefGoogle Scholar
  16. de Almeida AS, Medronho Rde A et al (2011) Identification of risk areas for visceral leishmaniasis in Teresina, Piaui State, Brazil. Am J Trop Med Hyg 84(5):681–687PubMedCentralPubMedCrossRefGoogle Scholar
  17. Duthie MS, Raman VS et al (2012) The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 30(2):134–141PubMedCentralPubMedCrossRefGoogle Scholar
  18. Esch KJ, Pontes NN et al (2012) Preventing zoonotic canine leishmaniasis in northeastern Brazil: pet attachment and adoption of community leishmania prevention. Am J Trop Med Hyg 87(5):822–831PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gavgani AS, Hodjati MH et al (2002) Effect of insecticide-impregnated dog collars on incidence of zoonotic visceral leishmaniasis in Iranian children: a matched-cluster randomised trial. Lancet 360(9330):374–379PubMedCrossRefGoogle Scholar
  20. Gradoni L (2001) An update on antileishmanial vaccine candidates and prospects for a canine Leishmania vaccine. Vet Parasitol 100(1–2):87–103PubMedCrossRefGoogle Scholar
  21. Hamarsheh O, Nasereddin A et al (2012) Serological and molecular survey of Leishmania parasites in apparently healthy dogs in the West Bank, Palestine. Parasit Vectors 5:183PubMedCentralPubMedCrossRefGoogle Scholar
  22. Harhay MO, Olliaro PL et al (2011a) Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol 27(9):403–409PubMedCrossRefGoogle Scholar
  23. Harhay MO, Olliaro PL et al (2011b) Who is a typical patient with visceral leishmaniasis? Characterizing the demographic and nutritional profile of patients in Brazil, East Africa, and South Asia. Am J Trop Med Hyg 84(4):543–550PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jimenez M, Gonzalez E et al (2013) Detection of Leishmania infantum and identification of blood meals in Phlebotomus perniciosus from a focus of human leishmaniasis in Madrid, Spain. Parasitol Res 112(7):2453–2459PubMedCrossRefGoogle Scholar
  25. Kovalenko DA, Razakov SA et al (2011) Canine leishmaniosis and its relationship to human visceral leishmaniasis in Eastern Uzbekistan. Parasit Vectors 4:58PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lemesre JL, Holzmuller P et al (2005) Protection against experimental visceral leishmaniasis infection in dogs immunized with purified excreted secreted antigens of Leishmania infantum promastigotes. Vaccine 23(22):2825–2840PubMedCrossRefGoogle Scholar
  27. Lima ID, Queiroz JW et al (2012) Leishmania infantum chagasi in northeastern Brazil: asymptomatic infection at the urban perimeter. Am J Trop Med Hyg 86(1):99–107PubMedCentralPubMedCrossRefGoogle Scholar
  28. Martins VT, Chavez-Fumagalli MA et al (2013) Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis. PLoS Negl Trop Dis 7(3):e2148PubMedCentralPubMedCrossRefGoogle Scholar
  29. Mencke N, Volf P et al (2003) Repellent efficacy of a combination containing imidacloprid and permethrin against sand flies (Phlebotomus papatasi) in dogs. Parasitol Res 90(suppl 3):S108–S111PubMedCrossRefGoogle Scholar
  30. Molina R, Gradoni L et al (2003) HIV and the transmission of Leishmania. Ann Trop Med Parasitol 97(suppl 1):29–45PubMedCrossRefGoogle Scholar
  31. Moreno J, Alvar J (2002) Canine leishmaniasis: epidemiological risk and the experimental model. Trends Parasitol 18(9):399–405Google Scholar
  32. Mutinga MJ, Renapurkar DM et al (1993) A bioassay to evaluate the efficacy of permethrin-impregnated screens used against phlebotomine sandflies (Diptera: Psychodidae) in Baringo District of Kenya. East Afr Med J 70(3):168–170PubMedGoogle Scholar
  33. Nunes CM, Pires MM et al (2010) Relationship between dog culling and incidence of human visceral leishmaniasis in an endemic area. Vet Parasitol 170(1–2):131–133PubMedCrossRefGoogle Scholar
  34. Oliveira TM, Furuta PI et al (2008) A study of cross-reactivity in serum samples from dogs positive for Leishmania sp., Babesia canis and Ehrlichia canis in enzyme-linked immunosorbent assay and indirect fluorescent antibody test. Rev Bras Parasitol Vet 17(1):7–11PubMedGoogle Scholar
  35. Otranto D, Dantas-Torres F (2010) Canine and feline vector-borne diseases in Italy: current situation and perspectives. Parasit Vectors 3:2PubMedCentralPubMedCrossRefGoogle Scholar
  36. Otranto D, Dantas-Torres F (2013) The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol 29(7):339–345PubMedCrossRefGoogle Scholar
  37. Otranto D, Paradies P et al (2007) Efficacy of a combination of 10% imidacloprid/50% permethrin for the prevention of leishmaniasis in kennelled dogs in an endemic area. Vet Parasitol 144(3–4):270–278PubMedCrossRefGoogle Scholar
  38. Otranto D, de Caprariis D et al (2010) Prevention of endemic canine vector-borne diseases using imidacloprid 10% and permethrin 50% in young dogs: a longitudinal field study. Vet Parasitol 172(3–4):323–332PubMedCrossRefGoogle Scholar
  39. Otranto D, Dantas-Torres F et al (2013) Prevention of canine leishmaniosis in a hyper-endemic area using a combination of 10% imidacloprid/4.5% flumethrin. PLoS One 8(2):e56374PubMedCentralPubMedCrossRefGoogle Scholar
  40. Paape D, Aebischer T (2011) Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics 74(9):1614–1624PubMedCrossRefGoogle Scholar
  41. Pagliano P, Carannante N et al (2005) Visceral leishmaniasis in pregnancy: a case series and a systematic review of the literature. J Antimicrob Chemother 55(2):229–233PubMedCrossRefGoogle Scholar
  42. Palatnik-de-Sousa CB, Silva-Antunes I et al (2009) Decrease of the incidence of human and canine visceral leishmaniasis after dog vaccination with Leishmune in Brazilian endemic areas. Vaccine 27(27):3505–3512PubMedCrossRefGoogle Scholar
  43. Queiroz PV, Monteiro GR et al (2009) Canine visceral leishmaniasis in urban and rural areas of Northeast Brazil. Res Vet Sci 86(2):267–273PubMedCrossRefGoogle Scholar
  44. Quinnell RJ, Courtenay O (2009) Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 136(14):1915–1934PubMedCrossRefGoogle Scholar
  45. Raman VS, Duthie MS et al (2012) Adjuvants for Leishmania vaccines: from models to clinical application. Front Immunol 3:144PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ribeiro VM, da Silva SM et al (2013) Control of visceral leishmaniasis in Brazil: recommendations from Brasileish. Parasit Vectors 6(1):8PubMedCentralPubMedCrossRefGoogle Scholar
  47. Romero GA, Boelaert M (2010) Control of visceral leishmaniasis in Latin America—a systematic review. PLoS Negl Trop Dis 4(1):e584PubMedCentralPubMedCrossRefGoogle Scholar
  48. Tabbara KS (2006) Progress towards a Leishmania vaccine. Saudi Med J 27(7):942–950PubMedGoogle Scholar
  49. Talmi-Frank D, Kedem-Vaanunu N et al (2010) Leishmania tropica infection in Golden Jackals and Red Foxes, Israel. Emerg Infect Dis 16(12):1973–1975PubMedCentralPubMedCrossRefGoogle Scholar
  50. Tasca KI, Buzetti WA et al (2009) Parasitological, immunohistochemical and histopathological study for Leishmania chagasi detection in splenic tissues of dogs with visceral leishmaniasis. Rev Bras Parasitol Vet 18(1):27–33PubMedCrossRefGoogle Scholar
  51. Tesh RB (1995) Control of zoonotic visceral leishmaniasis: is it time to change strategies? Am J Trop Med Hyg 52(3):287–292PubMedGoogle Scholar
  52. Trigo J, Abbehusen M et al (2010) Treatment of canine visceral leishmaniasis by the vaccine Leish-111f+MPL-SE. Vaccine 28(19):3333–3340PubMedCentralPubMedCrossRefGoogle Scholar
  53. Vanloubbeeck Y, Jones DE (2004) The immunology of Leishmania infection and the implications for vaccine development. Ann N Y Acad Sci 1026:267–272PubMedCrossRefGoogle Scholar
  54. Werneck GL (2008) Forum: geographic spread and urbanization of visceral leishmaniasis in Brazil. Introduction. Cad Saude Publica 24(12):2937–2940PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Epidemiology, College of Public HealthUniversity of IowaIowa CityUSA
  2. 2.Department of Veterinary Pathology, College of Veterinary MedicineIowa State UniversityAmesUSA

Personalised recommendations