Principles of PET and Its Role in Understanding Drug Delivery to the Brain

Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 10)

Abstract

Positron emission tomography (PET) is a non-invasive medical imaging technique that enables the investigation of drug pharmacokinetics in vivo. The technique is especially powerful for pharmacokinetic studies of new CNS drug candidates as tissue samples from the brain are understandably difficult to obtain. The PET technique involves the administration of a radiolabelled molecule whose spatio-temporal distribution can be measured using tomography. The radiolabelled molecule can be the drug under investigation, a structurally different molecule that binds to the same target as the drug candidate or a molecule that interacts with a downstream target that is believed to be affected by the action of the drug candidate. Such radiolabelled probes allow PET to address several questions central for CNS drug development: Does the drug candidate reach the target site? Does the drug candidate interact with the desired target? Is the concentration of the drug at the target site sufficient to illicit an effect? What is the temporal nature of such an interaction? What is the relationship between the target site concentration and the administered dose and/or plasma concentrations?

Keywords

Dementia Carbon Monoxide Radionuclide Histamine Macromolecule 

References

  1. Abanades S, van der Aart J, Barletta JA, Marzano C, Searle GE, Salinas CA, Ahmad JJ, Reiley RR, Pampols-Maso S, Zamuner S, Cunningham VJ, Rabiner EA, Laruelle MA, Gunn RN (2011) Prediction of repeat-dose occupancy from single-dose data: characterisation of the relationship between plasma pharmacokinetics and brain target occupancy. J Cereb Blood Flow Metab 31(3):944–952PubMedCrossRefGoogle Scholar
  2. Ashworth S, Rabiner EA, Gunn RN, Plisson C, Wilson AA, Comley RA, Lai RY, Gee AD, Laruelle M, Cunningham VJ (2010) Evaluation of 11C-GSK189254 as a novel radioligand for the H3 receptor in humans using PET. J Nucl Med 51(7):1021–1029PubMedCrossRefGoogle Scholar
  3. Bergström M, Grahnen A, Långström B (2003) Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 59(5–6):357–366PubMedCrossRefGoogle Scholar
  4. Carson RE, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC, Herscovitch P (1993) Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 13(1):24–42PubMedCrossRefGoogle Scholar
  5. Di L, Umland JP, Chang G, Huang Y, Lin Z, Scott DO, Troutman MD, Liston TE (2011) Species independence in brain tissue binding using brain homogenates. Drug Metab Dispos 39(7):1270–1277PubMedCrossRefGoogle Scholar
  6. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, Wall A, Ringheim A, Langström B, Nordberg A (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2856–2866PubMedCrossRefGoogle Scholar
  7. Eriksson J, van den Hoek J, Windhorst AD (2012) Transition metal mediated synthesis using [11C]CO at low pressure—a simplified method for 11C-carbonylation. J Label Compd Radiopharm 55:223–228Google Scholar
  8. Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21(6):635–652PubMedCrossRefGoogle Scholar
  9. Gunn RN, Murthy V, Catafau AM, Searle G, Bullich S, Slifstein M, Ouellet D, Zamuner S, Herance R, Salinas C, Pardo-Lozano R, Rabiner EA, Farre M, Laruelle M (2011) Translational characterization of [(11) C]GSK931145, a PET ligand for the glycine transporter type 1. Synapse 65(12):1319–1332PubMedCrossRefGoogle Scholar
  10. Gunn RN, Summerfield SG, Salinas CA, Read KD, Guo Q, Searle GE, Parker CA, Jeffrey P, Laruelle M (2012) Combining PET biodistribution and equilibrium dialysis assays to assess the free brain concentration and BBB transport of CNS drugs. J Cereb Blood Flow Metab 25(10):1Google Scholar
  11. Hammarlund-Udenaes M, Friden M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25(8):1737–1750PubMedCentralPubMedCrossRefGoogle Scholar
  12. Harada N, Ohba H, Fukumoto D, Kakiuchi T, Tsukada H (2004) Potential of [(18)F]beta-CFT-FE (2beta-carbomethoxy-3beta-(4-fluorophenyl)-8-(2-[(18)F]fluoroethyl)nortropane) as a dopamine transporter ligand: a PET study in the conscious monkey brain. Synapse 54(1):37–45PubMedCrossRefGoogle Scholar
  13. Hooker JM (2010) Modular strategies for PET imaging agents. Curr Opin Chem Biol 14(1):105–111PubMedCentralPubMedCrossRefGoogle Scholar
  14. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539PubMedCrossRefGoogle Scholar
  15. Jeffrey P, Summerfield S (2009) Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol Dis 37(1):33–37PubMedCrossRefGoogle Scholar
  16. Kealey S, Miller PW, Long NJ, Plisson C, Martarello L, Gee AD (2009) Copper(I) scorpionate complexes and their application in palladium-mediated [11C]carbonylation reactions. Chem Commun 25:3696–3698CrossRefGoogle Scholar
  17. Kim E, Howes OD, Kim BH, Yu KS, Jeong JM, Lee JS, Kim SJ, Jang IJ, Park JS, Kim YG, Shin SG, Turkheimer FE, Kapur S, Kwon JS (2011) The use of healthy volunteers instead of patients to inform drug dosing studies: a [11C]raclopride PET study. Psychopharmacology 217(4):515–523PubMedCrossRefGoogle Scholar
  18. Lee DE, Gallezot JD, Zheng MQ, Lim K, Ding YS, Huang Y, Carson RE, Morris ED, Cosgrove KP (2013) Test-retest reproducibility Of [11C]-(+)-propyl-hexahydro-naphtho-oxazin positron emission tomography using the bolus plus constant infusion paradigm. Mol Imaging 12(2):77–82PubMedCentralPubMedGoogle Scholar
  19. Lim KS, Kwon JS, Jang IJ, Jeong JM, Lee JS, Kim HW, Kang WJ, Kim JR, Cho JY, Kim E, Yoo SY, Shin SG, Yu KS (2007) Modeling of brain D2 receptor occupancy-plasma concentration relationships with a novel antipsychotic, YKP1358, using serial PET scans in healthy volunteers. Clin Pharmacol Ther 81(2):252–258PubMedCrossRefGoogle Scholar
  20. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10(5):740–747PubMedCrossRefGoogle Scholar
  21. Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73(2):175–186PubMedCrossRefGoogle Scholar
  22. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7PubMedCrossRefGoogle Scholar
  23. Pike VW (2009) PET radiotracers: crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol Sci 30(8):431–440PubMedCentralPubMedCrossRefGoogle Scholar
  24. Pillai GC, Mentre F, Steimer JL (2005) Non-linear mixed effects modeling—from methodology and software development to driving implementation in drug development science. J Pharmacokinet Pharmacodyn 32(2):161–183PubMedCrossRefGoogle Scholar
  25. Pinborg LH, Adams KH, Svarer C, Holm S, Hasselbalch SG, Haugbol S, Madsen J, Knudsen GM (2003) Quantification of 5-HT2A receptors in the human brain using [18F]altanserin-PET and the bolus/infusion approach. J Cereb Blood Flow Metab 23(8):985–996PubMedCrossRefGoogle Scholar
  26. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA, Rodriguez Martinez de Liano S, Liu E, Koller M, Gregg KM, Schenk D, Black R, Grundman M (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9(4):363–372PubMedCrossRefGoogle Scholar
  27. Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28(5):595–608PubMedCrossRefGoogle Scholar
  28. Steimer JL, Mallet A, Golmard JL, Boisvieux JF (1984) Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev 15(1–2):265–292PubMedCrossRefGoogle Scholar
  29. Summerfield SG, Lucas AJ, Porter RA, Jeffrey P, Gunn RN, Read KR, Stevens AJ, Metcalf AC, Osuna MC, Kilford PJ, Passchier J, Ruffo AD (2008) Toward an improved prediction of human in vivo brain penetration. Xenobiotica 38(12):1518–1535PubMedCrossRefGoogle Scholar
  30. Syvänen S, Blomquist G, Sprycha M, Höglund AU, Roman M, Eriksson O, Hammarlund-Udenaes M, Långström B, Bergström M (2006) Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood–brain barrier can be studied with PET. Neuroimage 32(3):1134–1141PubMedCrossRefGoogle Scholar
  31. Syvänen S, de Lange EC, Tagawa Y, Schenke M, Molthoff CF, Windhorst AD, Lammertsma AA, Voskuyl RA (2011) Simultaneous in vivo measurements of receptor density and affinity using [(11)C]flumazenil and positron emission tomography: comparison of full saturation and steady state methods. Neuroimage 57(3):928–937PubMedCrossRefGoogle Scholar
  32. Syvänen S, Eriksson J (2013) Advances in PET imaging of P-glycoprotein function at the blood–brain barrier. ACS Chem Neurosci 4(2):225–237PubMedCrossRefGoogle Scholar
  33. Syvänen S, Hammarlund-Udenaes M (2010) Using PET studies of P-gp function to elucidate mechanisms underlying the disposition of drugs. Curr Top Med Chem 10(17):1799–1809PubMedCrossRefGoogle Scholar
  34. Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, Knudsen GM, Hammarlund-Udenaes M (2009) Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37(3):635–643PubMedCrossRefGoogle Scholar
  35. van Dongen GA, Poot AJ, Vugts DJ (2012) PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: immuno-PET and TKI-PET. Tumour Biol 33(3):607–615PubMedCentralPubMedCrossRefGoogle Scholar
  36. van Dongen GA, Vosjan MJ (2010) Immuno-positron emission tomography: shedding light on clinical antibody therapy. Cancer Biother Radiopharm 25(4):375–385PubMedCrossRefGoogle Scholar
  37. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedCrossRefGoogle Scholar
  38. Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37(4):753–760PubMedCrossRefGoogle Scholar
  39. Zamuner S, Di Iorio VL, Nyberg J, Gunn RN, Cunningham VJ, Gomeni R, Hooker AC (2010) Adaptive-optimal design in PET occupancy studies. Clin Pharmacol Ther 87(5):563–571PubMedCrossRefGoogle Scholar
  40. Zamuner S, Rabiner EA, Fernandes SA, Bani M, Gunn RN, Gomeni R, Ratti E, Cunningham VJ (2012) A pharmacokinetic PET study of NK(1) receptor occupancy. Eur J Nucl Med Mol Imaging 39(2):226–235Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  1. 1.Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
  2. 2.Department of MedicineImperial College LondonLondonUK
  3. 3.Department of Engineering ScienceUniversity of OxfordOxfordUK
  4. 4.ImanovaLondonUK

Personalised recommendations