Skip to main content

Blood-to-Brain Drug Delivery Using Nanocarriers

  • Chapter
  • First Online:
Drug Delivery to the Brain

Abstract

Brain and nervous system disorders represent a large, unmet medical need affecting two billion people worldwide; a number that is expected to grow with increasing life expectancy and the expanding global population. CNS drug development is hampered by the restricted transport of drug candidates across the blood-brain barrier (BBB). We will discuss blood-to-brain drug delivery strategies that make use of nanocarriers, like liposomes, albumin nanoparticles, and polymeric nanoparticles. The focus will be on the key pharmaceutical, pharmacological, and regulatory aspects towards the clinical development of nanocarriers. Clinical development of treatments employing nanocarriers is not as straightforward as for a single active moiety; therefore, we will highlight the issues that should be considered when translating basic research towards clinical development. Although it is still unrealistic to expect a magic bullet for exclusive CNS drug delivery, much progress has been made towards successful development of novel treatments for patients with devastating brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali J, Ali M, Baboota S, Sahani JK, Ramassamy C, Dao L, Bhavna (2010) Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des 16(14):1644–1653

    Article  CAS  PubMed  Google Scholar 

  • Bankiewicz K (2014) Neurosurgical approaches: drug infusion directly into the parenchyma or cerebrospinal fluid. In: Hammarlund-Udenaes M, de Lange E, Thorne R (eds) Drug delivery to the brain—physiological concepts, methodologies and approaches. Springer, New York, Chapter 20 of this book

    Google Scholar 

  • Banks WA (2008) Delivery of peptides to the brain: emphasis on therapeutic development. Biopolymers 90(5):589–594

    Article  CAS  PubMed  Google Scholar 

  • Beg S, Samad A, Alam MI, Nazish I (2011) Dendrimers as novel systems for delivery of neuropharmaceuticals to the brain. CNS Neurol Disord Drug Targets 10(5):576–588

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar S, Tian F, Stoeger T et al (2010) Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Bondi ML, Di Gesu R, Craparo EF (2012) Lipid nanoparticles for drug targeting to the brain. Methods Enzymol 508:229–251

    Article  CAS  PubMed  Google Scholar 

  • Boraschi D, Costantino L, Italiani P (2012) Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond) 7(1):121–131

    Article  CAS  Google Scholar 

  • Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87(4):212–251

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia CS, Muller M, Bashaw ED et al (2007) AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 24(5):1014–1025

    Article  CAS  PubMed  Google Scholar 

  • Costantino L, Boraschi D (2012) Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today 17(7–8):367–378

    Article  CAS  PubMed  Google Scholar 

  • Dadparvar M, Wagner S, Wien S, Kufleitner J, Worek F, von Briesen H, Kreuter J (2011) HI 6 human serum albumin nanoparticles–development and transport over an in vitro blood-brain barrier model. Toxicol Lett 206(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522

    Article  CAS  PubMed  Google Scholar 

  • de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41(10):691–703

    Article  PubMed  Google Scholar 

  • de Lange EC, de Boer AG, Breimer DD (2000) Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv Drug Deliv Rev 45(2–3):125–148

    Article  PubMed  Google Scholar 

  • de Vries NA, Beijnen JH, Boogerd W, van Tellingen O (2006) Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 6(8):1199–1209

    Article  PubMed  Google Scholar 

  • Deguchi Y (2002) Application of in vivo brain microdialysis to the study of blood-brain barrier transport of drugs. Drug Metab Pharmacokinet 17(5):395–407

    Article  CAS  PubMed  Google Scholar 

  • Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59–127

    Article  PubMed  Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141

    Article  CAS  PubMed  Google Scholar 

  • Fabel K, Dietrich J, Hau P et al (2001) Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer 92(7):1936–1942

    Article  CAS  PubMed  Google Scholar 

  • Farrell D, Ptak K, Panaro NJ, Grodzinski P (2011) Nanotechnology-based cancer therapeutics–promise and challenge–lessons learned through the NCI Alliance for Nanotechnology in Cancer. Pharm Res 28(2):273–278

    Article  CAS  PubMed  Google Scholar 

  • FDA (2001) Guidance for Industry: S7A Safety Pharmacology Studies for Human Pharmaceuticals. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM074959.pdf

  • FDA (2002) Guidance for Industry: Liposome Drug Products. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070570.pdf

  • FDA (2004) Guidance for Industry: Changes to an approved NDA or ANDA. http://www.fda.gov/OHRMS/DOCKETS/98fr/1999d-0529-gdl0003.pdf

  • FDA (2006) Guidance for Industry and FDA Staff: Early Development Considerations for Innovative Combination Products. http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm126054.pdf

  • FDA (2010) Draft Guidance on Doxorubicin Hydrochloride. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM199635.pdf

  • FDA-CMC Overview of CMC guidances. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064979.htm

  • Fernandes C, Soni U, Patravale V (2010) Nano-interventions for neurodegenerative disorders. Pharmacol Res 62(2):166–178

    Article  CAS  PubMed  Google Scholar 

  • Fortin D (2014) Osmotic Opening of the BBB for DRug Treatment for Brain Tumors (Focus on Methodological Issues). In: Hammarlund-Udenaes M, de Lange E, Thorne R (eds) Drug delivery to the brain—physiological concepts, methodologies and approaches. Springer, New York, Chapter 21 of this book

    Google Scholar 

  • Gabathuler R (2014) Development of new protein vecotrs for the physiologic delivery of large therapeutic compounds to the CNS. In: Hammarlund-Udenaes M, de Lange E, Thorne R (eds) Drug delivery to the brain—physiological concepts, methodologies and approaches. Springer, New York, Chapter 18 of this book

    Google Scholar 

  • Gabizon AA (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7(2):223–225

    CAS  PubMed  Google Scholar 

  • Gaillard PJ (2010) Crossing barriers from blood-to-brain and academia-to-industry. Ther Deliv 1(4):495–500

    Article  PubMed  Google Scholar 

  • Gaillard PJ, Visser CC, Appeldoorn CCM, Rip J (2011) Enhanced brain drug delivery: safely crossing the blood-brain barrier. Drug Discov Today Technol 9(2):e155–e160

    Article  Google Scholar 

  • Gaillard PJ, Gladdines W, Appeldoorn CCM, et al. (2012) Development of glutathione pegylated liposomal doxorubicin (2B3-101) for the treatment of brain cancer. [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 31 Mar–4 Apr; Chicago, Illinois. Philadelphia (PA): AACR; 2012. Abstract nr 5687

    Google Scholar 

  • Ganta S, Deshpande D, Korde A, Amiji M (2010) A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol 27(7):260–273

    Article  CAS  PubMed  Google Scholar 

  • Garbayo E, Montero-Menei CN, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2009) Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson’s disease. J Control Release 135(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V (2011) Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J Drug Target 19(9):837–845

    Article  CAS  PubMed  Google Scholar 

  • Gilead Sciences, Inc. (2000) Press Release; http://www.gilead.com/pr_969296575

  • Glas M, Koch H, Hirschmann B et al (2007) Pegylated liposomal doxorubicin in recurrent malignant glioma: analysis of a case series. Oncology 72(5–6):302–307

    Article  PubMed  Google Scholar 

  • Gray D (2014) Pharmacoeconomical considerations of CNS drug development. In: Hammarlund-Udenaes M, de Lange E, Thorne R (eds) Drug delivery to the brain—physiological concepts, methodologies and approaches. Springer, New York, Chapter 15 of this book

    Google Scholar 

  • Hammarlund-Udenaes M (2009) Active-site concentrations of chemicals—are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 106:215–220

    Article  PubMed  Google Scholar 

  • Hammarlund-Udenaes M (2014) PK concepts for brain drug delivery. In: Hammarlund-Udenaes M, de Lange E, Thorne R (eds) Drug delivery to the brain—physiological concepts, methodologies and approaches. Springer, New York, Chapter 6 of this book

    Google Scholar 

  • Hau P, Fabel K, Baumgart U et al (2004) Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100(6):1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    Article  CAS  PubMed  Google Scholar 

  • Holmgaard R, Benfeldt E, Nielsen JB et al (2012) Comparison of open-flow microperfusion and microdialysis methodologies when sampling topically applied fentanyl and benzoic acid in human dermis ex vivo. Pharm Res 29:1808–1820

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Lionberger R, Yu LX (2011) In vitro and in vivo characterizations of PEGylated liposomal doxorubicin. Bioanalysis 3(3):333–344

    Article  CAS  PubMed  Google Scholar 

  • Jiskoot W, van Schie RM, Carstens MG, Schellekens H (2009) Immunological risk of injectable drug delivery systems. Pharm Res 26(6):1303–1314

    Article  CAS  PubMed  Google Scholar 

  • Jones AR, Shusta EV (2007) Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24(9):1759–1771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127(2):97–109

    Article  CAS  PubMed  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25):2434–2443

    Article  CAS  PubMed  Google Scholar 

  • Konofagou EE (2014) Emerging engineering technologies for opening the BBB. In: Hammarlund-Udenaes M, de Lange E, Thorne R (eds) Drug delivery to the brain—physiological concepts, methodologies and approaches. Springer, New York, Chapter 22 of this book

    Google Scholar 

  • Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132(3):171–183

    Article  CAS  PubMed  Google Scholar 

  • Lin JH (2008) CSF as a surrogate for assessing CNS exposure: an industrial perspective. Curr Drug Metab 9(1):46–59

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist A, Rip J, Gaillard PJ, Björkman S, Hammarlund-Udenaes M (2012) Enhanced brain delivery of the opioid peptide DAMGO in glutathione PEGylated liposomes: a microdialysis study. Mol Pharm 10:1533–1541

    Article  PubMed  Google Scholar 

  • Luppi B, Bigucci F, Cerchiara T, Zecchi V (2010) Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opin Drug Deliv 7(7):811–828

    Article  CAS  PubMed  Google Scholar 

  • Lutz J, Augustin AJ, Jager LJ, Bachmann D, Brandl M (1995) Acute toxicity and depression of phagocytosis in vivo by liposomes: influence of lysophosphatidylcholine. Life Sci 56(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K, Vyas SP (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Morigi V, Tocchio A, Pellegrini CB, Sakamoto JH, Arnone M, Tasciotti E (2012) Nanotechnology in medicine: from inception to market domain. J Drug Deliv Article ID 389485, 7 pages. doi:10.1155/2012/389485

    Google Scholar 

  • Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, Ndesendo VM (2011) A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv Article ID 939851, 19 pages. doi:10.1155/2011/939851

    Google Scholar 

  • Muller RH, Keck CM (2012) Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm 80(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58(11):1423–1430

    Article  CAS  Google Scholar 

  • Nystrom AM, Fadeel B (2012) Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 161(2):403–408

    Article  PubMed  Google Scholar 

  • Palmieri D, Chambers AF, Felding-Habermann B, Huang S, Steeg PS (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13(6):1656–1662

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2010) Preparation of Trojan horse liposomes (THLs) for gene transfer across the blood-brain barrier. Cold Spring Harb Protoc (4): pdb prot5407

    Google Scholar 

  • Parnham MJ, Wetzig H (1993) Toxicity screening of liposomes. Chem Phys Lipids 64(1–3):263–274

    Article  CAS  PubMed  Google Scholar 

  • Patel T, Zhou J, Piepmeier JM, Saltzman WM (2011) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64(7):701–705

    Article  PubMed Central  PubMed  Google Scholar 

  • Reddy MK, Wu L, Kou W, Ghorpade A, Labhasetwar V (2008) Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl Biochem Biotechnol 151(2–3):565–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rempe R, Cramer S, Huwel S, Galla HJ (2011) Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity. Biochem Biophys Res Commun 406(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Rip J, Appeldoorn CC, Manca FM, Dorland R, Van Kregten JM and Gaillard PJ (2010) Receptor-mediated delivery of drugs across the blood-brain barrier. Front. Pharmacol. Conference Abstract: Pharmacology and Toxicology of the Blood-Brain Barrier: State of the Art, Needs for Future Research and Expected Benefits for the EU. doi:10.3389/conf.fphar.2010.02.00025

    Google Scholar 

  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M (2008) Seven challenges for nanomedicine. Nat Nanotechnol 3(5):242–244

    Article  CAS  PubMed  Google Scholar 

  • Shih AY, Mateo C, Drew PJ, Tsai PS, Kleinfeld D (2012) A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp pii(61):3742

    Google Scholar 

  • Smith QR, Allen DD (2003) In situ brain perfusion technique. Methods Mol Med 89:209–218

    PubMed  Google Scholar 

  • Szebeni J, Alving CR, Baranyi L, Bunger R (2010) Interaction of liposomes with complement leading to adverse reactions. In: Gregoriadis G (ed) Liposome technology—volume III interactions of liposomes with the biological milieu, 3rd edn. Informa Healthcare USA, Inc, Zug

    Google Scholar 

  • Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Szebeni J, Bedocs P, Rozsnyay Z et al (2012) Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome. Nanomedicine 8(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Tazina EV, Kostin KV, Oborotova NA (2011) Specific features of drug encapsulation in liposomes (a review). Pharm Chem J 45(8):481–490

    Article  CAS  Google Scholar 

  • Thorne R (2014) Intranasal drug delivery to the brain. In: Hammarlund-Udenaes M, de Lange E, Thorne R (eds) Drug delivery to the brain—physiological concepts, methodologies and approaches. Springer, New York, Chapter 16 of this book

    Google Scholar 

  • Tsai CS, Park JW, Chen LT (2011) Nanovector-based therapeis in advanced pancreatic cancer. J Gastrointest Oncol 2:185–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–256

    Article  CAS  PubMed  Google Scholar 

  • Ulbrich K, Knobloch T, Kreuter J (2011) Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB). J Drug Target 19(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • van Rooy I, Cakir-Tascioglu S, Couraud PO et al (2010) Identification of peptide ligands for targeting to the blood-brain barrier. Pharm Res 27(4):673–682

    Article  PubMed Central  PubMed  Google Scholar 

  • van Rooy I, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E (2012) Attaching the phage display-selected GLA peptide to liposomes: factors influencing target binding. Eur J Pharm Sci 45(3):330–335

    Article  PubMed  Google Scholar 

  • Wagner S, Kufleitner J, Zensi A et al (2010) Nanoparticulate transport of oximes over an in vitro blood-brain barrier model. PLoS One 5(12):e14213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 6:765–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilhelm I, Fazakas C, Krizbai IA (2011) In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars) 71(1):113–128

    Google Scholar 

  • Wilson B (2009) Brain targeting PBCA nanoparticles and the blood-brain barrier. Nanomedicine (Lond) 4(5):499–502

    Article  CAS  Google Scholar 

  • WMA (2008) World Medical Association Declaration of Helsinki. http://www.wma.net/en/30publications/10policies/b3/17c.pdf

  • Wohlfart S, Gelperina S, Kreuter J (2011) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161(2):264–273

    Article  PubMed  Google Scholar 

  • Wolf SM, Jones CM (2011) Designing oversight for nanomedicine research in human subjects: systematic analysis of exceptional oversight for emerging technologies. J Nanopart Res 13:1449–1465

    Article  PubMed Central  PubMed  Google Scholar 

  • Wong HL, Wu XY, Bendayan R (2011) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7):686–700

    Article  PubMed  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Article  CAS  PubMed  Google Scholar 

  • Zucker D, Marcus D, Barenholz Y, Goldblum A (2009) Liposome drugs’ loading efficiency: a working model based on loading conditions and drug's physicochemical properties. J Control Release 139(1):73–80

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter J. Gaillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Gaillard, P.J., Visser, C.C., de Boer, M., Appeldoorn, C.C.M., Rip, J. (2014). Blood-to-Brain Drug Delivery Using Nanocarriers. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_15

Download citation

Publish with us

Policies and ethics