Skip to main content

Unavoidably Delayed: A Personal Perspective of Twenty Years of Research on a Sound Localization Cue

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

  • 2275 Accesses

Abstract

Localization of sound sources depends on a variety of cues, the most important of which are the differences in sound level and arrival time at the two ears. The differences in the arrival time are only of the order of millionths of seconds, and more than 60 years ago a putative neural mechanism to decipher these tiny differences was proposed by Lloyd Jeffress. Jeffress’s model has stood the test of time, with most of its essential elements (an internal delay before comparison of the input from the two ears by a coincidence mechanism) essentially now taken as established fact. However, over the last 20 years or so there has been renewed interest in the processes by which the tiny time differences are decoded, in particular in the preprocessing of the timing information and in the mechanism that generates the internal delay. These issues are still not fully resolved, as will be clear from this short and personal perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Batra, R., Kuwada, S., & Fitzpatrick, D. C. (1997a). Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. Journal of Neurophysiology, 78, 1222–1236.

    PubMed  CAS  Google Scholar 

  • Batra, R., Kuwada, S., & Fitzpatrick, D. C. (1997b). Sensitivity to interaural temporal disparities of low- and high- frequency neurons in the superior olivary complex. I. Heterogeneity of responses. Journal of Neurophysiology, 73, 1222–1236.

    Google Scholar 

  • Beckius, G. E., Batra, R., & Oliver, D. L. (1999). Axons from anterventral cochlear nucleus that terminate in medial superior olive of the cat: Observations related to delay lines. Journal of Neuroscience, 19, 3146–3161.

    PubMed  CAS  Google Scholar 

  • Bonham, B. H., & Lewis, E. R. (1999). Localization by interaural time difference (ITD): Effects of interaural frequency mismatch. Journal of the Acoustical Society of America, 106, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Brand, A., Behrend, O., Marquardt, T., McAlpine, D., & Grothe, B. (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature, 417, 543–547.

    Article  PubMed  CAS  Google Scholar 

  • Burger, R. M., Fukui, I., Ohmori, H., & Rubel, E. W. (2011). Inhibition in the balance: Binaurally coupled inhibitory feedback in sound localization circuitry. Journal of Neurophysiology, 106, 4–14.

    Article  PubMed Central  PubMed  Google Scholar 

  • Caird, D. M., Pillman, F., & Klinke, R. (1989). Processing of binaural masking level difference signals in the cat inferior colliculus. Hearing Research, 43, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Caird, D. M., Palmer, A. R., & Rees, A. (1991). Binaural masking level difference effects in single units of the guinea pig inferior colliculus. Hearing Research, 57, 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Chase, S. M., & Young, E. D. (2005). Limited segregation of different types of sound localization information among classes of units in the inferior colliculus. Journal of Neuroscience, 25, 7575–7585.

    Article  PubMed  CAS  Google Scholar 

  • Colburn, H. S. (1973). Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. Journal of the Acoustical Society of America, 54, 1458–1470.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J. M., & Brown, P. B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32, 613–636.

    PubMed  CAS  Google Scholar 

  • Grothe, B. (2000). The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Progress in Neurobiology, 61, 581–610.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, K. E., & Delgutte, B. (2004). A physiologically based model of interaural time difference discrimination. Journal of Neuroscience, 24, 7110–7117.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harper, N. S., & McAlpine, D. (2004). Optimal neural population coding of an auditory spatial cue. Nature, 430, 682–686.

    Article  PubMed  CAS  Google Scholar 

  • Jeffress, L. A. (1948). A place code theory of sound localization. Journal of Comparative and Physiological Psychology, 44, 35–39.

    Article  Google Scholar 

  • Jiang, D., McAlpine, D., & Palmer, A. R. (1997). Detectability index measures of binaural masking level difference across populations of inferior colliculus neurones. Journal of Neuroscience, 17, 9331–9339.

    PubMed  CAS  Google Scholar 

  • Joris, P. X., & Yin, T. C. T. (2007). A matter of time: Internal delays in binaural processing. Trends in Neuroscience, 30, 70–78.

    Article  CAS  Google Scholar 

  • Joris, P. X., Van de Sande, B., Louage, D. H., & van der Heijden, M. (2006). Binaural and cochlear disparities. Proceedings of the National Academy of Sciences of the USA, 103, 12917–12922.

    Google Scholar 

  • Kapfer, C., Seidl, A. H., Schweizer, H., & Grothe, B. (2002). Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nature Neuroscience, 5, 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Karino, S., Smith, P. H., Yin, T. C., & Joris, P. X. (2011). Axonal branching patterns as sources of delay in the mammalian auditory brainstem: A re-examination. Journal of Neuroscience, 31, 3016–3031.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knudsen, E. I., & Konishi, M. (1978). A neural map of auditory space in the owl. Science, 200, 795–797.

    Article  PubMed  CAS  Google Scholar 

  • Kuwada, S., & Yin, T. C. (1983). Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. Journal of Neurophysiology, 50, 981–999.

    Google Scholar 

  • Licklider, J. C. R. (1948). The influence of interaural phase relations upon the masking of speech by white noise. Journal of the Acoustical Society of America, 20, 150–159.

    Article  Google Scholar 

  • McAlpine, D., Jiang, D., & Palmer, A. R. (1996a). Monaural and binaural responses of low-best frequency neurones in the inferior colliculus of the guinea pig. Hearing Research, 97, 136–152.

    Article  PubMed  CAS  Google Scholar 

  • McAlpine, D., Jiang, D., & Palmer, A. R. (1996b). Binaural masking level differences in the inferior colliculus of the guinea pig. Journal of the Acoustical Society of America, 100, 490–503.

    Article  PubMed  CAS  Google Scholar 

  • McAlpine, D., Jiang, D., & Palmer, A. R. (1998). Convergent input from brainstem coincidence detectors onto delay-sensitive neurones in the inferior colliculus. Journal of Neuroscience, 18, 6026–6039.

    PubMed  CAS  Google Scholar 

  • McAlpine, D., Jiang, D., & Palmer, A. R. (2001). A neural code for low-frequency sound localisation in mammals. Nature Neuroscience, 4, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A. R., & King, A. J. (1982). The representation of auditory space in the mammalian superior colliculus. Nature, 299, 248–249.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A. R., Rees, A., & Caird, D. (1990). Interaural delay sensitivity to tones and broad-band signals in the guinea-pig inferior colliculus. Hearing Research, 50, 71–86.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A. R., Jiang, D., & McAlpine, D. (2000). Responses of neurones in the inferior colliculus to binaural masking level differences created by inverting the noise in one ear (NoSo vs NpSo). Journal of Neurophysiology, 84, 844–852.

    PubMed  CAS  Google Scholar 

  • Palmer, A. R., Lui, L., & Shackleton, T. M. (2007). Changes in interaural time sensitivity with interaural level differences in the inferior colliculus. Hearing Research, 223, 105–113.

    Article  PubMed  Google Scholar 

  • Rayleigh, L. (1907). Our perception of sound direction. Philosophical Magazine, 13, 214–232.

    Article  Google Scholar 

  • Rhode, W. S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. Journal of the Acoustical Society of America, 49, 1218–1231.

    Article  PubMed  Google Scholar 

  • Rose, J., Gross, N., Geisler, C., & Hind, J. (1966). Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. Journal of Neurophysiology, 2, 288–314.

    Google Scholar 

  • Sachs, M. B., & Young, E. D. (1979). Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. Journal of the Acoustical Society of America, 66, 470–479.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, M. R. (1977). New viewpoints in binaural interactions. In E. F. Evans & J. P. Wilson (Eds.), Psychophysics and physiology of hearing (pp. 455–467.). New York: Academic Press.

    Google Scholar 

  • Seidl, A. H., & Grothe, B. (2003). Acoustic experience is essential for the development of normal ITD processing. Association for Research in Otolaryngology, 26, 930.

    Google Scholar 

  • Seidl, A. H., & Grothe, B. (2005). Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience. Journal of Neurophysiology, 94, 1028–1036.

    Article  PubMed  Google Scholar 

  • Seidl, A. H., Rubel, E. W., & Harris, D. M. (2010). Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. Journal of Neuroscience, 30, 70–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shackleton, T. M., McAlpine, D., & Palmer, A. R. (2000). Modelling convergent input onto interaural-delay sensitive inferior colliculus neurones. Hearing Research, 149, 199–215.

    Article  PubMed  CAS  Google Scholar 

  • Shackleton, T. M., Skottun, B. C., Arnott, R. H., & Palmer, A. R. (2003). Interaural time difference discrimination thresholds for single neurons in the inferior colliculus of Guinea pigs. Journal of Neuroscience, 23, 716–724.

    PubMed  CAS  Google Scholar 

  • Shamma, S. A. (1989). Stereausis: Binaural processing without neural delays. Journal of the Acoustical Society of America, 86, 989–1006.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P. H., Joris, P. X., & Yin, T. C. T. (1993). Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: Evidence for delay lines to the medial superior olive. Journal of Comparative Neurology, 331, 245–260.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer, M. W., & Semple, M. N. (1991). Interaural phase coding in auditory midbrain: Influence of dynamic stimulus features. Science, 254, 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer, M. W., & Semple, M. N. (1993). Responses of inferior colliculus neurones to time-varying interaural phase disparity: Effects of shifting the locus of virtual motion. Journal of Neurophysiology, 69, 1245–1263.

    PubMed  CAS  Google Scholar 

  • Spitzer, M. W., & Semple, M. N. (1995). Neurons sensitive to interaural phase disparity in gerbil superior olive: Diverse monaural and temporal response properties. Journal of Neurophysiology, 73, 1668–1690.

    PubMed  CAS  Google Scholar 

  • Tang, Z.-Q., & Lu, Y. (2012). Two GABAA responses with distinct kinetics in a sound localization circuit. Journal of Physiology, 590, 3787–3805.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Bergeijk, W. A. (1962). Variation on a theme of Bekesy: A model of binaural interaction. Journal of the Acoustical Society of America, 34, 1431–1437.

    Article  Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing. New-York: McGraw-Hill.

    Google Scholar 

  • Wise, L. Z., & Irvine, D. R. (1985). Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: Implications for auditory spatial representation. Journal of Neurophysiology, 54, 185–211.

    PubMed  CAS  Google Scholar 

  • Yin, T., & Kuwada, S. (1983). Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. Journal of Neurophysiology, 50, 1020–1042.

    PubMed  CAS  Google Scholar 

  • Yin, T., Chan, J., & Irvine, D. (1986). Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. I. Responses to wideband noise. Journal of Neurophysiology, 55, 280–300.

    PubMed  CAS  Google Scholar 

  • Yin, T. C., & Chan, J. C. (1990). Interaural time sensitivity in medial superior olive of cat. Journal of Neurophysiology, 64, 465–488.

    PubMed  CAS  Google Scholar 

  • Young, E. D., & Sachs, M. B. (1979). Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. Journal of the Acoustical Society of America, 66, 1381–1403.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments 

I am really grateful to Trevor Shackleton and Adrian Rees for casting a critical eye over this piece of writing which, to be honest, is a little outside my usual comfort zone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palmer, A.R. (2014). Unavoidably Delayed: A Personal Perspective of Twenty Years of Research on a Sound Localization Cue. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_22

Download citation

Publish with us

Policies and ethics