Skip to main content

Pitch: Mechanisms Underlying the Pitch of Pure and Complex Tones

  • Chapter
  • First Online:
Book cover Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

  • 2314 Accesses

Abstract

It is widely believed that the perception of the pitch of sinusoids depends on a temporal mechanism for low and medium frequencies, and a place mechanism for high frequencies. Data from musical interval and melody perception suggest a transition in mechanism at about 4–5 kHz, while data from frequency discrimination suggest a transition at a higher frequency, around 8 kHz. The detection of frequency modulation may also depend on a temporal mechanism when the modulation frequency is low and the carrier frequency is below about 5 kHz; for high modulation frequencies a place mechanism appears to dominate for all carrier frequencies. The pitch of complex tones also appears to depend on both place and temporal analysis. For complex tones that are filtered to contain only high, unresolved harmonics, pitch may be extracted from the temporal envelope when the harmonics are very high and from the temporal fine structure when the lowest audible harmonic has a rank in the range 9–13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attneave, F., & Olson, R. K. (1971). Pitch as a medium: A new approach to psychophysical scaling. American Journal of Psychology, 84, 147–166.

    PubMed  CAS  Google Scholar 

  • Bernstein, J. G., & Oxenham, A. J. (2003). Pitch discrimination of diotic and dichotic tone complexes: Harmonic resolvability or harmonic number? Journal of the Acoustical Society of America, 113, 3323–3334.

    PubMed  Google Scholar 

  • Bernstein, J. G., & Oxenham, A. J. (2005). An autocorrelation model with place dependence to account for the effect of harmonic number on fundamental frequency discrimination. Journal of the Acoustical Society of America, 117, 3816–3831.

    PubMed Central  PubMed  Google Scholar 

  • Bernstein, J. G., & Oxenham, A. J. (2006). The relationship between frequency selectivity and pitch discrimination: Effects of stimulus level. Journal of the Acoustical Society of America, 120, 3916–3928.

    PubMed  Google Scholar 

  • Bernstein, J. G., & Oxenham, A. J. (2008). Harmonic segregation through mistuning can improve fundamental frequency discrimination. Journal of the Acoustical Society of America, 124, 1653–1667.

    PubMed Central  PubMed  Google Scholar 

  • Cariani, P. A., & Delgutte, B. (1996a). Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. Journal of Neurophysiology, 76, 1698–1716.

    PubMed  CAS  Google Scholar 

  • Cariani, P. A., & Delgutte, B. (1996b). Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch and the dominance region for pitch. Journal of Neurophysiology, 76, 1717–1734.

    Google Scholar 

  • Carlyon, R. P., & Moore, B. C. J. (1984). Intensity discrimination: A severe departure from Weber’s Law. Journal of the Acoustical Society of America, 76, 1369–1376.

    PubMed  CAS  Google Scholar 

  • Carlyon, R. P., Long, C. J., & Micheyl, C. (2011). Across-channel timing differences as a potential code for the frequency of pure tones. Journal of the Association for Research in Otolaryngology, 13, 159–171.

    PubMed Central  PubMed  Google Scholar 

  • Dai, H. (2000). On the relative influence of individual harmonics on pitch judgment. Journal of the Acoustical Society of America, 107, 953–959.

    PubMed  CAS  Google Scholar 

  • de Boer, E. (1956). Pitch of inharmonic signals. Nature, 178, 535–536.

    Google Scholar 

  • de Cheveigné, A., & Pressnitzer, D. (2006). The case of the missing delay lines: Synthetic delays obtained by cross-channel phase interaction. Journal of the Acoustical Society of America, 119, 3908–3918.

    PubMed  Google Scholar 

  • Ernst, S. M., & Moore, B. C. J. (2010). Mechanisms underlying the detection of frequency modulation. Journal of the Acoustical Society of America, 128, 3642–3648.

    PubMed  Google Scholar 

  • Ernst, S. M., & Moore, B. C. J. (2012). The role of time and place cues in the detection of frequency modulation by hearing-impaired listeners. Journal of the Acoustical Society of America, 131, 4722–4731.

    PubMed  Google Scholar 

  • Evans, E. F. (1978). Place and time coding of frequency in the peripheral auditory system: Some physiological pros and cons. Audiology, 17, 369–420.

    PubMed  CAS  Google Scholar 

  • Florentine, M., & Houtsma, A. J. M. (1983). Tuning curves and pitch matches in a listener with a unilateral, low-frequency hearing loss. Journal of the Acoustical Society of America, 73, 961–965.

    PubMed  CAS  Google Scholar 

  • Florentine, M., Buus, S., & Mason, C. R. (1987). Level discrimination as a function of level for tones from 0.25 to 16 kHz. Journal of the Acoustical Society of America, 81, 1528–1541.

    Google Scholar 

  • Glasberg, B. R., & Moore, B. C. J. (1990). Derivation of auditory filter shapes from notched-noise data. Hearing Research, 47, 103–138.

    PubMed  CAS  Google Scholar 

  • Gockel, H., Plack, C. J., & Carlyon, R. P. (2005). Reduced contribution of a nonsimultaneous mistuned harmonic to residue pitch. Journal of the Acoustical Society of America, 118, 3783–3793.

    PubMed  Google Scholar 

  • Gockel, H., Moore, B. C. J., Carlyon, R. P., & Plack, C. J. (2007). Effect of duration on the frequency discrimination of individual partials in a complex tone and on the discrimination of fundamental frequency. Journal of the Acoustical Society of America, 121, 373–382.

    PubMed  Google Scholar 

  • Goldstein, J. L. (1973). An optimum processor theory for the central formation of the pitch of complex tones. Journal of the Acoustical Society of America, 54, 1496–1516.

    PubMed  CAS  Google Scholar 

  • Hartmann, W. M., & Doty, S. L. (1996). On the pitches of the components of a complex tone. Journal of the Acoustical Society of America, 99, 567–578.

    PubMed  CAS  Google Scholar 

  • Hartmann, W. M., McAdams, S., & Smith, B. K. (1990). Hearing a mistuned harmonic in an otherwise periodic complex tone. Journal of the Acoustical Society of America, 88, 1712–1724.

    PubMed  CAS  Google Scholar 

  • Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001). Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Computation, 13, 2273–2316.

    PubMed  CAS  Google Scholar 

  • Hoekstra, A., & Ritsma, R. J. (1977). Perceptive hearing loss and frequency selectivity. In E. F. Evans & J. P. Wilson (Eds.), Psychophysics and physiology of hearing (pp. 263–271). London: Academic Press.

    Google Scholar 

  • Hopkins, K., & Moore, B. C. J. (2007). Moderate cochlear hearing loss leads to a reduced ability to use temporal fine structure information. Journal of the Acoustical Society of America, 122, 1055–1068.

    PubMed  Google Scholar 

  • Houtgast, T. (1972). Psychophysical evidence for lateral inhibition in hearing. Journal of the Acoustical Society of America, 51, 1885–1894.

    PubMed  CAS  Google Scholar 

  • Houtgast, T. (1974). Lateral suppression in hearing. Ph.D. thesis, Free University of Amsterdam.

    Google Scholar 

  • Houtsma, A. J. (1981). Noise-induced shifts in the pitch of pure and complex tones. Journal of the Acoustical Society of America, 70, 1661–1668.

    Google Scholar 

  • Houtsma, A. J. M., & Smurzynski, J. (1990). Pitch identification and discrimination for complex tones with many harmonics. Journal of the Acoustical Society of America, 87, 304–310.

    Google Scholar 

  • Huss, M., & Moore, B. C. J. (2005). Dead regions and pitch perception. Journal of the Acoustical Society of America, 117, 3841–3852.

    PubMed  Google Scholar 

  • Ives, D. T., & Patterson, R. D. (2008). Pitch strength decreases as F0 and harmonic resolution increase in complex tones composed exclusively of high harmonics. Journal of the Acoustical Society of America, 123, 2670–2679.

    PubMed Central  PubMed  Google Scholar 

  • Jackson, H. M., & Moore, B. C. J. (2013). The dominant region for the pitch of complex tones with low fundamental frequencies. Journal of the Acoustical Society of America, 134, 1193–1204.

    Google Scholar 

  • Javel, E. (1980). Coding of AM tones in the chinchilla auditory nerve: Implications for the pitch of complex tones. Journal of the Acoustical Society of America, 68, 133–146.

    PubMed  CAS  Google Scholar 

  • Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America, 68, 1115–1122.

    PubMed  CAS  Google Scholar 

  • Jurado, C., & Moore, B. C. J. (2010). Frequency selectivity for frequencies below 100 Hz: comparisons with mid-frequencies. Journal of the Acoustical Society of America, 128, 3585–3596.

    PubMed  Google Scholar 

  • Jurado, C., Pedersen, C. S., & Moore, B. C. J. (2011). Psychophysical tuning curves for frequencies below 100 Hz. Journal of the Acoustical Society of America, 129, 3166–3180.

    PubMed  Google Scholar 

  • Kluk, K., & Moore, B. C. J. (2005). Factors affecting psychophysical tuning curves for hearing-impaired subjects. Hearing Research, 200, 115–131.

    PubMed  Google Scholar 

  • Kluk, K., & Moore, B. C. J. (2006). Detecting dead regions using psychophysical tuning curves: A comparison of simultaneous and forward masking. International Journal of Audiology, 45, 463–476.

    PubMed  Google Scholar 

  • Lacher-Fougère, S., & Demany, L. (1998). Modulation detection by normal and hearing-impaired listeners. Audiology, 37, 109–121.

    PubMed  Google Scholar 

  • Loeb, G. E., White, M. W., & Merzenich, M. M. (1983). Spatial cross correlation: A proposed mechanism for acoustic pitch perception. Biological Cybernetics, 47, 149–163.

    PubMed  CAS  Google Scholar 

  • Meddis, R., & O’Mard, L. (1997). A unitary model of pitch perception. Journal of the Acoustical Society of America, 102, 1811–1820.

    PubMed  CAS  Google Scholar 

  • Micheyl, C., Xiao, L., & Oxenham, A. J. (2012). Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level. Hearing Research, 292, 1–13.

    PubMed Central  PubMed  Google Scholar 

  • Miyazono, H., Glasberg, B. R., & Moore, B. C. J. (2009). Dominant region for pitch at low fundamental frequencies (F0): The effect of fundamental frequency, phase and temporal structure. Acoustical Science and Technology, 30, 161–169.

    Google Scholar 

  • Miyazono, H., Glasberg, B. R., & Moore, B. C. J. (2010). Perceptual learning of fundamental frequency (F0) discrimination: Effects of F0, harmonic number, and component phase. Journal of the Acoustical Society of America, 128, 3649–3657.

    PubMed  Google Scholar 

  • Moore, B. C. J. (1973). Frequency difference limens for short-duration tones. Journal of the Acoustical Society of America, 54, 610–619.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J. (1974). Relation between the critical bandwidth and the frequency-difference limen. Journal of the Acoustical Society of America, 55, 359.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J. (1978). Psychophysical tuning curves measured in simultaneous and forward masking. Journal of the Acoustical Society of America, 63, 524–532.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J. (1980). Neural interspike intervals and pitch. Audiology, 19, 363–365.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J. (1982). An introduction to the psychology of hearing, 2nd ed. London: Academic Press.

    Google Scholar 

  • Moore, B. C. J. (1986). Parallels between frequency selectivity measured psychophysically and in cochlear mechanics. Scandinavian Audiology, Supplement 25, 139–152.

    Google Scholar 

  • Moore, B. C. J. (2004). Dead regions in the cochlea: Conceptual foundations, diagnosis and clinical applications. Ear and Hearing, 25, 98–116.

    PubMed  Google Scholar 

  • Moore, B. C. J. (2012). An introduction to the psychology of hearing, 6th ed. Leiden, Netherlands: Brill.

    Google Scholar 

  • Moore, B. C. J., & Rosen, S. M. (1979). Tune recognition with reduced pitch and interval information. Quarterly Journal of Experimental Psychology, 31, 229–240.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1983a). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. Journal of the Acoustical Society of America, 74, 750–753.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1983b). Forward masking patterns for harmonic complex tones. Journal of the Acoustical Society of America, 73, 1682–1685.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1986). The role of frequency selectivity in the perception of loudness, pitch and time. In B. C. J. Moore (Ed.), Frequency selectivity in hearing (pp. 251–308). London: Academic Press.

    Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1987). Formulae describing frequency selectivity as a function of frequency and level and their use in calculating excitation patterns. Hearing Research, 28, 209–225.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1988a). Pitch perception and phase sensitivity for subjects with unilateral and bilateral cochlear hearing impairments. In A. Quaranta (Ed.), Clinical audiology (pp. 104–109). Bari, Italy: Laterza.

    Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1988b). Effects of the relative phase of the components on the pitch discrimination of complex tones by subjects with unilateral cochlear impairments. In H. Duifhuis, H. Wit, & J. Horst (Eds.), Basic issues in hearing (pp. 421–430). London: Academic Press.

    Google Scholar 

  • Moore, B. C. J., & Peters, R. W. (1992). Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity. Journal of the Acoustical Society of America, 91, 2881–2893.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Ohgushi, K. (1993). Audibility of partials in inharmonic complex tones. Journal of the Acoustical Society of America, 93, 452–461.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Sek, A. (1994). Effects of carrier frequency and background noise on the detection of mixed modulation. Journal of the Acoustical Society of America, 96, 741–751.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Sek, A. (1995). Effects of carrier frequency, modulation rate and modulation waveform on the detection of modulation and the discrimination of modulation type (AM vs FM). Journal of the Acoustical Society of America, 97, 2468–2478.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Sek, A. (1996). Detection of frequency modulation at low modulation rates: Evidence for a mechanism based on phase locking. Journal of the Acoustical Society of America, 100, 2320–2331.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1997). A model of loudness perception applied to cochlear hearing loss. Auditory Neuroscience, 3, 289–311.

    Google Scholar 

  • Moore, B. C. J., & Alcántara, J. I. (2001). The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear and Hearing, 22, 268–278.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Skrodzka, E. (2002). Detection of frequency modulation by hearing-impaired listeners: Effects of carrier frequency, modulation rate, and added amplitude modulation. Journal of the Acoustical Society of America, 111, 327–335.

    PubMed  Google Scholar 

  • Moore, B. C. J., & Sek, A. (2009a). Development of a fast method for determining sensitivity to temporal fine structure. International Journal of Audiology, 48, 161–171.

    PubMed  Google Scholar 

  • Moore, B. C. J., & Sek, A. (2009b). Sensitivity of the human auditory system to temporal fine structure at high frequencies. Journal of the Acoustical Society of America, 125, 3186–3193.

    PubMed  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (2010). The role of temporal fine structure in harmonic segregation through mistuning. Journal of the Acoustical Society of America, 127, 5–8.

    PubMed  Google Scholar 

  • Moore, B. C. J., & Gockel, H. (2011). Resolvability of components in complex tones and implications for theories of pitch perception. Hearing Research, 276, 88–97.

    PubMed  Google Scholar 

  • Moore, B. C. J., & Ernst, S. M. (2012). Frequency difference limens at high frequencies: Evidence for a transition from a temporal to a place code. Journal of the Acoustical Society of America, 132, 1542–1547.

    PubMed  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., & Shailer, M. J. (1984). Frequency and intensity difference limens for harmonics within complex tones. Journal of the Acoustical Society of America, 75, 550–561.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., & Peters, R. W. (1985). Relative dominance of individual partials in determining the pitch of complex tones. Journal of the Acoustical Society of America, 77, 1853–1860.

    Google Scholar 

  • Moore, B. C. J., Huss, M., Vickers, D. A., Glasberg, B. R., & Alcántara, J. I. (2000). A test for the diagnosis of dead regions in the cochlea. British Journal of Audiology, 34, 205–224.

    PubMed  CAS  Google Scholar 

  • Moore, B. C. J., Alcántara, J. I., & Glasberg, B. R. (2002). Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane. Hearing Research, 163, 101–110.

    PubMed  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., Flanagan, H. J., & Adams, J. (2006a). Frequency discrimination of complex tones; assessing the role of component resolvability and temporal fine structure. Journal of the Acoustical Society of America, 119, 480–490.

    PubMed  Google Scholar 

  • Moore, B. C. J., Glasberg, B. R., Low, K.-E., Cope, T., & Cope, W. (2006b). Effects of level and frequency on the audibility of partials in inharmonic complex tones. Journal of the Acoustical Society of America, 120, 934–944.

    PubMed  Google Scholar 

  • Moore, B. C. J., Hopkins, K., & Cuthbertson, S. J. (2009). Discrimination of complex tones with unresolved components using temporal fine structure information. Journal of the Acoustical Society of America, 125, 3214–3222.

    PubMed  Google Scholar 

  • Ohgushi, K., & Hatoh, T. (1991). Perception of the musical pitch of high frequency tones. In Y. Cazals, L. Demany, & K. Horner (Eds.), Ninth International Symposium on Hearing: Auditory Physiology and Perception (pp. 207–212). Oxford: Pergamon.

    Google Scholar 

  • Oxenham, A. J., & Shera, C. A. (2003). Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Journal of the Association for Research in Otolaryngology, 4, 541–554.

    PubMed Central  PubMed  Google Scholar 

  • Oxenham, A. J., & Simonson, A. M. (2006). Level dependence of auditory filters in nonsimultaneous masking as a function of frequency. Journal of the Acoustical Society of America, 119, 444–453.

    PubMed Central  PubMed  Google Scholar 

  • Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 24, 1–15.

    PubMed  CAS  Google Scholar 

  • Patterson, R. D. (1976). Auditory filter shapes derived with noise stimuli. Journal of the Acoustical Society of America, 59, 640–654.

    PubMed  CAS  Google Scholar 

  • Plomp, R. (1964). The ear as a frequency analyzer. Journal of the Acoustical Society of America, 36, 1628–1636.

    Google Scholar 

  • Plomp, R. (1967). Pitch of complex tones. Journal of the Acoustical Society of America, 41, 1526–1533.

    PubMed  CAS  Google Scholar 

  • Plomp, R., & Mimpen, A. M. (1968). The ear as a frequency analyzer II. Journal of the Acoustical Society of America, 43, 764–767.

    PubMed  CAS  Google Scholar 

  • Recio-Spinoso, A., Temchin, A. N., van Dijk, P., Fan, Y. H., & Ruggero, M. A. (2005). Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers. Journal of Neurophysiology, 93, 3615–3634.

    PubMed  Google Scholar 

  • Ritsma, R. J. (1967). Frequencies dominant in the perception of the pitch of complex sounds. Journal of the Acoustical Society of America, 42, 191–198.

    PubMed  CAS  Google Scholar 

  • Robles, L., & Ruggero, M. A. (2001). Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305–1352.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rose, J. E., Brugge, J. F., Anderson, D. J., & Hind, J. E. (1967). Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. Journal of Neurophysiology, 30, 769–793.

    PubMed  CAS  Google Scholar 

  • Schouten, J. F. (1940). The residue and the mechanism of hearing. Proceedings of the Koninklijke Nederlands Akademie van Wetenschap, 43, 991–999.

    Google Scholar 

  • Schouten, J. F., Ritsma, R. J., & Cardozo, B. L. (1962). Pitch of the residue. Journal of the Acoustical Society of America, 34, 1418–1424.

    Google Scholar 

  • Sek, A., & Moore, B. C. J. (1995). Frequency discrimination as a function of frequency, measured in several ways. Journal of the Acoustical Society of America, 97, 2479–2486.

    PubMed  CAS  Google Scholar 

  • Sellick, P. M., Patuzzi, R., & Johnstone, B. M. (1982). Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. Journal of the Acoustical Society of America, 72, 131–141.

    PubMed  CAS  Google Scholar 

  • Shackleton, T. M., & Carlyon, R. P. (1994). The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. Journal of the Acoustical Society of America, 95, 3529–3540.

    PubMed  CAS  Google Scholar 

  • Shamma, S., & Klein, D. (2000). The case of the missing pitch templates: How harmonic templates emerge in the early auditory system. Journal of the Acoustical Society of America, 107, 2631–2644.

    PubMed  CAS  Google Scholar 

  • Shannon, R. V., Galvin, J. J., 3rd, & Baskent, D. (2002). Holes in hearing. Journal of the Association for Research in Otolaryngology, 3, 185–199.

    PubMed Central  PubMed  Google Scholar 

  • Siebert, W. M. (1970). Frequency discrimination in the auditory system: Place or periodicity mechanisms. Proceedings of the IEEE, 58, 723–730.

    Google Scholar 

  • Srulovicz, P., & Goldstein, J. L. (1983). A central spectrum model: A synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. Journal of the Acoustical Society of America, 73, 1266–1276.

    PubMed  CAS  Google Scholar 

  • Terhardt, E. (1974a). Pitch, consonance, and harmony. Journal of the Acoustical Society of America, 55, 1061–1069.

    PubMed  CAS  Google Scholar 

  • Terhardt, E. (1974b). Pitch of pure tones: Its relation to intensity. In E. Zwicker & E. Terhardt (Eds.), Facts and models in hearing (pp. 350–357). Berlin: Springer-Verlag.

    Google Scholar 

  • Terhardt, E. (1979). Calculating virtual pitch. Hearing Research, 1, 155–182.

    PubMed  CAS  Google Scholar 

  • Turner, C. W., Burns, E. M., & Nelson, D. A. (1983). Pure tone pitch perception and low-frequency hearing loss. Journal of the Acoustical Society of America, 73, 966–975.

    PubMed  CAS  Google Scholar 

  • Verschuure, J., & van Meeteren, A. A. (1975). The effect of intensity on pitch. Acustica, 32, 33–44.

    Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing. New York: McGraw-Hill.

    Google Scholar 

  • Ward, W. D. (1954). Subjective musical pitch. Journal of the Acoustical Society of America, 26, 369–380.

    Google Scholar 

  • Webster, J., & Muerdter, D. (1965). Pitch shifts due to low-pass and high-pass noise bands. Journal of the Acoustical Society of America, 37, 382–383.

    Google Scholar 

  • Zhou, B. (1995). Auditory filter shapes at high frequencies. Journal of the Acoustical Society of America, 98, 1935–1942.

    PubMed  CAS  Google Scholar 

  • Zwicker, E. (1956). Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs (The foundations for determining the information capacity of the auditory system). Acustica, 6, 356–381.

    Google Scholar 

  • Zwislocki, J. J., & Nguyen, N. (1999). Place code for pitch: A necessary revision. Acta Oto-Laryngologica, 119, 140–145.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

My thinking about pitch was strongly influenced by a visit to the Netherlands while I was working on my PhD. I had especially useful discussions with Reinier Plomp, Guido Smoorenburg, Tammo Houtgast, Roel Ritsma, Jan Schouten, Ben Lopez-Cardozo, and Egbert de Boer. I am grateful to all of them for the time that they graciously spent with a then-unknown PhD student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. J. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moore, B.C.J. (2014). Pitch: Mechanisms Underlying the Pitch of Pure and Complex Tones. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_21

Download citation

Publish with us

Policies and ethics