Skip to main content

Directional Hearing in Insects and Other Small Animals: The Physics of Pressure-Difference Receiving Ears

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

Abstract

In many animals the eardrums receive sounds at both the external and internal surfaces, and the eardrums are responding to the vectorial difference between the external and internal sound pressures. Eardrum motion is a necessary part of the sensory transduction process, and it correlates strongly with ear directionality. The internal sound pressure acting on the eardrum can be measured by first calibrating the eardrum vibration with sound acting only at its external surface and then using measured vibrations of the eardrum for estimating the amplitude and phase of the sound(s) acting at its inner surface.

This procedure has been used in bushcrickets, grasshoppers, crickets, and budgerigars. The ears of many bushcrickets are located in the thin forelegs, but they are driven mainly by sound arriving at the inner surface of the eardrums from horn-shaped hearing trumpets that open at the lateral sides of the body. The eardrums of grasshoppers and budgerigars receive sound both at their external surfaces and at their internal surfaces, which are connected to the other ear by internal air spaces. This is also the case in crickets, but here the ears also receive sounds from two spiracular openings, which connect the inner surfaces of the eardrums with the air outside the animal. The transmission properties of these pathways have been measured, and the expected directionality has been calculated. Excellent agreements have been found between the calculated and the measured directionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Autrum, H. (1940). Ăśber LautäuĂźerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta und Versuche einer Hörtheorie fĂĽr Tympanalorgane vom Locustidentyp. Zeitschrift fĂĽr vergleichende Physiologie, 28, 326–352.

    Google Scholar 

  • Christensen-Dalsgaard, J. (2011). Vertebrate pressure-gradient receivers. Hearing Research, 273, 37–45.

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J. & Manley, G. A. (2008). Acoustic coupling of lizard eardrums. JARO, 9, 407–416.

    Article  PubMed Central  PubMed  Google Scholar 

  • Helversen, D. von (1997). Acoustic communication and orientation in grasshoppers. In M. Lehrer (Ed.), Orientation and communication in arthropods (pp. 301–341). Basel: Birkhäuser Verlag.

    Google Scholar 

  • Kleindienst, H.-U., Wohlers, D. W., & Larsen, O. N. (1983). Tympanal membrane motion is necessary for hearing in crickets. Journal of Comparative Physiology A, 15, 397–400.

    Article  Google Scholar 

  • Klump, G. M., & Larsen, O. N. (1992) Azimuthal sound localization in the European starling (Sturnus vulgaris): I. Physical binaural cues. Journal of Comparative Physiology A, 170, 243–251.

    Google Scholar 

  • Köppl, C. (2009). Evolution of sound localization in land vertebrates. Current Biology, 19(15), R635–R639.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, G. F. (1977). Model for the interaural time differences in the azimuthal plane. Journal of the Acoustical Society of America, 62, 157–167.

    Article  Google Scholar 

  • Larsen, O. N. (1981). Mechanical time resolution in some insect ears. II. Impulse sound transmission in acoustic tracheal tubes. Journal of Comparative Physiology, 143, 297–304.

    Article  Google Scholar 

  • Larsen, O. N., Surlykke, A., & Michelsen, A. (1984). Directionality of the cricket ear: A property of the tympanal membrane. Naturwissenschaften, 71, 538–540.

    Article  Google Scholar 

  • Larsen, O. N., Kleindienst, H.-U., & Michelsen, A. (1989). Biophysical aspects of sound reception. In F. Huber, T. E. Moore & W. Loher (Eds.), Cricket behavior and neurobiology (pp. 364–390). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Larsen, O. N., Dooling, R. J., & Ryals, B. M. (1996). Roles of intracranial air pressure in bird audition. In E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins, C. R. Steele, & E. Hecht-Poinar (Eds.), Diversity in auditory mechanics (pp. 11–17). Singapore: World Scientific.

    Google Scholar 

  • Larsen, O. N., Dooling, R. J., & Michelsen, A. (2006). The role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). Journal of Comparative Physiology A, 192, 1063–1072.

    Article  Google Scholar 

  • Mason, A. C., Oshinsky, M. L., & Hoy, R. R. (2001). Hyperacute directional hearing in a microscale auditory system. Nature, 410, 686–690.

    Google Scholar 

  • Michelsen, A., & Larsen, O. N. (2008). Pressure difference receiving ears. Bioinspiration & Biomimetics, 3, 011001. doi: 10.1088/1748–3182/3/1/011001

  • Michelsen, A., & Löhe, G. (1995). Tuned directionality in cricket ears. Nature, 375, 639.

    Article  CAS  Google Scholar 

  • Michelsen, A., & Rohrseitz, K. (1995). Directional sound processing and interaural sound transmission in a small and a large grasshopper. Journal of Experimental Biology, 198, 1817–1827.

    PubMed  Google Scholar 

  • Michelsen, A., & Rohrseitz, K. (1997). Sound localization in a habitat: An analytical approach to quantifying the degradation of directional cues. Bioacoustics, 7, 291–313.

    Article  Google Scholar 

  • Michelsen, A., Hedwig, B., & Elsner, N. (1990). Biophysical and neurophysiological effects of respiration on sound reception in the migratory locust Locusta migratoria. In F. G. Gribalin, K. Wiese, & A. V. Popov (Eds.), Sensory systems and communication in arthropods (pp. 199–203). Basel: Birkhäuser Verlag.

    Chapter  Google Scholar 

  • Michelsen, A., Heller. K.-G., Stumpner, A., & Rohrseitz, K. (1994a). Directional hearing and the gain of the acoustic trachea in bushcrickets. Journal of Comparative Physiology A, 175, 145–151.

    Google Scholar 

  • Michelsen, A., Popov, A. V., & Lewis, B. (1994b). Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A, 175, 153–164.

    Article  Google Scholar 

  • Moiseff, A., & Konishi, M. (1981). The owl’s interaural pathway is not involved in sound localization. Journal of Comparative Physiology, 144, 299–304.

    Article  Google Scholar 

  • MĂĽller, J. (1826). Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Tiere. Leipzig.

    Google Scholar 

  • Nelson, B. S., & Suthers, R. A. (2004). Sound localization in a small passerine bird: Discrimination of azimuth as a function of head orientation and sound frequency. Journal of Experimental Biology, 207, 4121–4133.

    Article  PubMed  Google Scholar 

  • Pumphrey, R. J. (1940). Hearing in insects. Biological Reviews, 15, 107–132.

    Article  Google Scholar 

  • Renaud, D. L., & Popper, A. N. (1975). Sound localization in the bottle nose porpoise Tursiops truncatus. Journal of Experimental Biology, 63, 569–585.

    PubMed  CAS  Google Scholar 

  • Schöneich, S., & Hedwig, B. (2010). Hyperacute directional hearing and phonotactic steering in the cricket (Gryllus bimaculatus de Geer). PloS ONE, 5, e15141. doi: 10.1371/journal.pone.0015141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weber, T., & Thorson, J. (1989). Phonotactic behavior of walking crickets. In F. Huber, T. E. Moore, & W. Loher (Eds.), Cricket behavior and neurobiology (pp. 310–339). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Welch, T. E., & Dent, M. L. (2011). Lateralization of acoustic signals by dichotically listening budgerigars (Melopsittacus undulatus). Journal of the Acoustical Society of America, 130(4), 2293–2301.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Original research for this chapter was supported by grants from the Danish Natural Science Research Council and from the Danish National Research Foundation. We thank Jakob Christensen-Dalsgaard for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Michelsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michelsen, A., Larsen, O.N. (2014). Directional Hearing in Insects and Other Small Animals: The Physics of Pressure-Difference Receiving Ears. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_19

Download citation

Publish with us

Policies and ethics