Skip to main content

Ubiquitin–Proteasome System in the Hallmarks of Cancer

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1358 Accesses

Abstract

The paramount role of ubiquitin–protein conjugation for its ability to regulate protein turnover and nonproteolytic signaling functions has been implicated in the regulation of various biological and pathological phenomena. Malignant cells utilize modified ubiquitination to augment or attenuate signaling pathways on the basis of whether the outcome of this signaling is conducive or not for tumor growth and survival. Hence, there lies a necessity for a fresh view at the ubiquitin-dependent mechanisms that play an important role in human oncological diseases. To control ubiquitination-dependent mechanisms of cell transformation within tumor cells themselves, along with increased rate of protein synthesis, translation and protein quality control processes are often required to support the transforming events for their contribution to the mechanisms of tumor progression. Given that ubiquitin metabolism is governed by enzymes—E1, E2, E3, E4, deubiquitinases (DUBs), and the proteasome—the system as a whole is ripe for target and drug discovery in cancer. Recently, the hallmarks of cancer designated by Hanahan and Weinberg in 2011 comprise ten biological capabilities acquired during the multistep development of tumor. Based on these hallmarks, the present review enlightened the role of ubiquitination in every hallmark for rationalizing the complexities of neoplastic disease and also discusses therapeutic implications targeting the ubiquitin–proteasome system as well as synthetic and natural compounds with potent inhibitory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell. 100: 57-70

    PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell.144: 646-674.

    PubMed  CAS  Google Scholar 

  3. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem. 70: 503-533

    PubMed  CAS  Google Scholar 

  4. Geyer RK, Yu ZK, Maki CG (2000) The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol. 2: 569-573

    PubMed  CAS  Google Scholar 

  5. Duan L, Raja SM, Chen G et al (2011) Negative regulation of EGFR-Vav2 signaling axis by Cbl ubiquitin ligase controls EGF receptor-mediated epithelial cell adherens junction dynamics and cell migration. J Biol Chem. 286: 620-633

    PubMed  CAS  Google Scholar 

  6. Arrigo AP, Tanaka K, Goldberg AL et al (1988) Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature. 331: 192-194

    PubMed  CAS  Google Scholar 

  7. Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 269: 7709-7718

    PubMed  CAS  Google Scholar 

  8. Akopian TN, Kisselev AF, Goldberg AL (1997) Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem. 272: 1791-1798

    PubMed  CAS  Google Scholar 

  9. Verma R, Oania R, Graumann J et al (2005) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118: 99-110

    Google Scholar 

  10. Wenzel T, Eckerskorn C, Lottspeich F et al (1994) Existence of a molecular ruler in proteasomes suggested by analysis of degradation products. FEBS Lett 349: 205-209

    PubMed  CAS  Google Scholar 

  11. Reyes-Turcu FE, Ventii KH, Wilkinson KD et al (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem. 78: 363-397

    PubMed  CAS  Google Scholar 

  12. Welchman RL , Gordon C, Mayer RJ ( 2005 ) Ubiquitin and ubiquitin – like proteins as multifunctional signals . Nat Rev Mol Cell Biol 6: 599 – 609

    PubMed  CAS  Google Scholar 

  13. Wang RC, Levine B (2010) Autophagy in cellular growth control. FEBS Lett. 584: 1417-1426

    PubMed  CAS  Google Scholar 

  14. Feshchenko EA, Langdon WY, Tsygankov AY (1998) Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem. 273: 8323-8331

    PubMed  CAS  Google Scholar 

  15. Soubeyran P, Kowanetz K, Szymkiewicz I et al (2002) Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGFR receptor. Nature. 14: 416: 183-187

    Google Scholar 

  16. Longva KE, Blystad FD, Stang E et al (2002) Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol. 156:843-854

    PubMed  CAS  Google Scholar 

  17. Ray D, Ahsan A, Helman A (2011) Regulation of EGFR Protein Stability by the HECT-type Ubiquitin Ligase SMURF2. Neoplasia. 13: 570–578.

    PubMed  CAS  Google Scholar 

  18. Shtiegman K, Kochupurakkal BS, Zwang et al (2007) Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene. 26: 6968-6978

    Google Scholar 

  19. Lenferink AE, Pinkas-Kramarski R, van de Poll ML et al (1998) Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 17: 3385-3397

    PubMed  CAS  Google Scholar 

  20. Jeffers M, Taylor GA, Weidner KM et al (1997) Degradation of the Met tyrosine kinase receptor by the ubiquitin- proteasome pathway. Mol Cell Biol. 17: 799-808

    PubMed  CAS  Google Scholar 

  21. Yang WL, Wang J, Chan CH et al (2009) The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 325: 1134-1138

    PubMed  CAS  Google Scholar 

  22. Bashyam MD, Bair R, Kim YH et al (2005) Array based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia. 7: 556-562

    PubMed  CAS  Google Scholar 

  23. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 18: 621 – 663

    PubMed  CAS  Google Scholar 

  24. Ayako S, Tatsuhiro S, Yutaka S et al (2008) Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci. 99: 986-994

    Google Scholar 

  25. Choudhuri T, Pal S, Das T et al (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem. 280: 20059-20068

    PubMed  CAS  Google Scholar 

  26. Chakraborty J, Banerjee S, Ray P et al (2010) Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells. J Biol Chem. 285: 33104-33112

    PubMed  CAS  Google Scholar 

  27. Sen GS, Mohanty S, Hossain DM et al (2011) Curcumin enhances the efficacy of chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem. 286: 42232-42247

    PubMed  CAS  Google Scholar 

  28. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature. 387: 299-303

    PubMed  CAS  Google Scholar 

  29. Balint EE, Vousden KH (2001) Activation and activities of the p53 tumour suppressor protein. Br J Cancer. 85: 1813-1823

    CAS  Google Scholar 

  30. Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol. 2: 731-737

    PubMed  CAS  Google Scholar 

  31. Soria C, Estermann FE, Espantman KC et al (2010) Heterochromatin silencing of p53 target genes by a small viral protein. Nature. 466: 1076–1081

    PubMed  CAS  Google Scholar 

  32. Scheffner M, Huibregtse JM, Vierstra RD (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 75: 495–505

    PubMed  CAS  Google Scholar 

  33. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 248: 76–79

    PubMed  CAS  Google Scholar 

  34. Nomine Y, Masson M, Charbonnier S et al. (2006) Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell. 21: 665–678

    PubMed  CAS  Google Scholar 

  35. Be X, Hong Y, Wei J et al. (2001) Solution structure determination and mutational analysis of the papillomavirus E6 interacting peptide of E6AP. Biochemistry. 40: 1293–1299

    PubMed  CAS  Google Scholar 

  36. Mansur CP, Marcus B, Dalal S et al (1995) The domain of p53 required for binding HPV 16 E6 is separable from the degradation domain. Oncogene. 10: 457–465

    PubMed  CAS  Google Scholar 

  37. Li M, Chen D, Shiloh A (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 416: 648-653

    PubMed  CAS  Google Scholar 

  38. Sa G, Stacey DW (2004) P27 expression is regulated by separate signaling pathways, downstream of Ras, in each cell cycle phase. Exp Cell Res. 300: 427-439

    PubMed  CAS  Google Scholar 

  39. Sutterlüty H, Chatelain E, Marti A et al (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1: 207–214

    PubMed  Google Scholar 

  40. Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 23: 4776-4789

    PubMed  CAS  Google Scholar 

  41. Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401: 297-300

    PubMed  CAS  Google Scholar 

  42. Bortner DM, Rosenberg MP (1997) Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol. 17: 453-459

    PubMed  CAS  Google Scholar 

  43. Strohmaier H, Spruck CH, Kaiser P et al (2000) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316-322

    Google Scholar 

  44. Margottin-Goguet F, Hsu JY, Loktev A et al (2003) Prophase destruction of Emi1 by the SCF (βTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell. 4: 813–826

    PubMed  CAS  Google Scholar 

  45. Tung JJ, Hansen DV, Ban KH et al (2005) A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc Natl Acad Sci USA. 102: 4318–4323

    PubMed  CAS  Google Scholar 

  46. Busino L, Donzelli M, Chiesa M et al (2003) Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature. 426: 87–91

    PubMed  CAS  Google Scholar 

  47. Kanemori Y, Uto K, Sagata N (2003) β-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci USA. 102: 6279–6284

    Google Scholar 

  48. Schmidt A, Duncan PI, Rauh NR et al (2005) Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev. 19: 502–513

    PubMed  CAS  Google Scholar 

  49. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol. 10: 755–764

    PubMed  CAS  Google Scholar 

  50. Yamamoto M, Okamoto T, Takeda K et al (2006) Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol. 7: 962–970

    PubMed  CAS  Google Scholar 

  51. Yamamoto M, Sato S, Saitoh T (2006) Cutting Edge: Pivotal function of Ubc13 in thymocyte TCR signaling. J Immunol. 177: 7520–7524

    PubMed  CAS  Google Scholar 

  52. Zeng W, Sun L, Jiang X et al (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell. 141: 315–330

    PubMed  CAS  Google Scholar 

  53. Huang H, Jeon MS, Liao L et al (2010) K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity. 33: 60–70

    PubMed  CAS  Google Scholar 

  54. Venuprasad K, Huang H, Harada Y et al (2009) The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Curr Biol. 19:1255-126

    Google Scholar 

  55. Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Current Protocols in Immunology, Unit11.9D, 1-19, Pennsylvania, 2009

    Google Scholar 

  56. King CG, Buckler JL, Kobayashi T et al (2008) Cutting edge: requirement for TRAF6 in the induction of T cell anergy. J Immunol. 180: 34–38

    PubMed  CAS  Google Scholar 

  57. Qian Y, Liu C, Hartupee J et al (2007) The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol. 8: 247–256

    PubMed  CAS  Google Scholar 

  58. Liu C, Qian W, Qian Y et al (2009) Act1, a Ubox E3 ubiquitin ligase for IL-17 signaling. Sci Signal. 2: ra63

    PubMed  Google Scholar 

  59. Fukuchi M, Fukai Y, Masuda N et al (2002) High level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 62: 7162-7165

    PubMed  CAS  Google Scholar 

  60. Momand J, Jung D, Wilczynski S et al (1998) The MDM2 gene amplification database. Nucleic Acids Res. 26: 3453-3459

    PubMed  CAS  Google Scholar 

  61. Guan B, Pungaliya P, Li X et al (2008) Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1. J Biol Chem. 283: 4834-4840

    PubMed  CAS  Google Scholar 

  62. Kirisako T, Kamei K, Murata S et al (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25: 4877–4887

    PubMed  CAS  Google Scholar 

  63. Tokunaga F, Sakata S, Saeki Y et al. (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 11: 123–132

    PubMed  CAS  Google Scholar 

  64. Park M, Dean M, Cooper CS et al (1986) Mechanism of Met oncogene activation. Cell. 45: 895-904

    PubMed  CAS  Google Scholar 

  65. Peschard P, Fournier TM, Lamorte L et al (2001) Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 8: 995-1004

    PubMed  CAS  Google Scholar 

  66. Bachelder RE, Yoon SO, Franci C et al (2005) Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol. 168: 29–33.

    PubMed  CAS  Google Scholar 

  67. Li J, Zhou BP (2011) Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 11: 49.

    PubMed  Google Scholar 

  68. Zhang Y, Chang C, Gehling DJ et al (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A. 98: 974-979

    PubMed  CAS  Google Scholar 

  69. Jin C, Yang YA, Anver MR et al (2009) Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. Cancer Res. 69: 735-740

    PubMed  CAS  Google Scholar 

  70. Chen B, Mariano J, Tsai YC et al (2006) The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci U S A. 103: 341-346

    PubMed  CAS  Google Scholar 

  71. Demidenko ZN, Rapisarda A, Garayoa M et al (2005) Accumulation of hypoxia-inducible factor-1alpha is limited by transcription-dependent depletion. Oncogene. 24: 4829– 4838

    PubMed  CAS  Google Scholar 

  72. Tanimoto K, Makino Y, Pereira T et al (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19: 4298-4309

    PubMed  CAS  Google Scholar 

  73. Clifford SC, Cockman ME, Smallwood AC et al (2001) Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet. 10: 1029-1038

    PubMed  CAS  Google Scholar 

  74. Soussi T, Wiman KG (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 12: 303-12.

    PubMed  CAS  Google Scholar 

  75. Jiang J, Ballinger CA, Wu Y et al (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem. 276: 42938-42944

    PubMed  CAS  Google Scholar 

  76. Welcker M & Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 8: 83-93

    PubMed  CAS  Google Scholar 

  77. Guo G, Gui Y, Gao S et al Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet. 44: 17-9.

    Google Scholar 

  78. Fesik SW (2000) Insights into programmed cell death through structural biology. Cell. 103: 273-282

    PubMed  CAS  Google Scholar 

  79. Huang DC, Strasser A (2000) BH3-only proteins—essential initiators of apoptotic cell death. Cell 109: 839-842

    Google Scholar 

  80. Wei MC, Zong WX, Cheng EH (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 29: 727-730

    Google Scholar 

  81. Cory S, Adams JM (2002) The bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2: 647-656

    PubMed  CAS  Google Scholar 

  82. Thomas M, Banks L (1998) Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene. 17: 2943–2954

    PubMed  CAS  Google Scholar 

  83. Matsuzawa S, Takayama S, Froesch B et al (1998) A p53-inducible human homologue of Drosophila seven in absentia (Siah1) inhibits cell growth: suppression by BAG-1. EMBO J. 17: 2736–2747

    PubMed  CAS  Google Scholar 

  84. Becker K, Schneider P, Hofmann K (1997) Interaction of Fas (Apo-1/CD95) with proteins implicated in the ubiquitination pathway. FEBS Lett. 412: 102-106

    PubMed  CAS  Google Scholar 

  85. Ryu SW, Chae SK, Kim E (2000) Interaction of Daxx, a Fas binding protein, with sentrin and Ubc9. Biochem. Biophys. Res. Commun. 279: 6-10

    PubMed  CAS  Google Scholar 

  86. Lalioti VS, Vergarajauregui S, Pulido D et al (2002) The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1. J Biol Chem. 277: 19783-19791

    PubMed  CAS  Google Scholar 

  87. Ryu SW, Kim E (2001) Apoptosis induced by human Fas-associated factor 1, hFAF1, requires its ubiquitin homologous domain, but not the Fas-binding domain. Biochem Biophys Res Commun. 286: 1027-1032

    PubMed  CAS  Google Scholar 

  88. McDonald ER 3rd, El-Deiry WS (2004) Suppression of caspase-8- and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth. Proc Natl Acad Sci U S A. 101: 6170-6175.

    PubMed  CAS  Google Scholar 

  89. Yeh WC, Itie A, Elia AJ et al (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity. 12: 633-642

    PubMed  CAS  Google Scholar 

  90. Griffith TS, Chin WA, Jackson GC et al (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 161: 2833-2840

    PubMed  CAS  Google Scholar 

  91. Gao M, Labuda T, Xia Y et al (2004) Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science. 306: 271–275

    PubMed  CAS  Google Scholar 

  92. Krebs DL, Hilton DJ (2001) SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 19: 378-387

    PubMed  CAS  Google Scholar 

  93. Warburg O (1956) On the origin of cancer cells. Science. 123: 309–314

    PubMed  CAS  Google Scholar 

  94. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324: 1029–1033

    PubMed  CAS  Google Scholar 

  95. Moncada S, Higgs EA, Colombo SL (2005) Fulfilling the metabolic requirements for cell proliferation. Biochem J. 446: 1-7

    Google Scholar 

  96. Dang CV (2010) Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 9: 3884-3886

    PubMed  CAS  Google Scholar 

  97. Urasaki Y, Heath L, Xu CW (2012) Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors. PLoS One. 7: e36775.

    PubMed  CAS  Google Scholar 

  98. Zhou J, Livak MF, Bernier M et al (2007) Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am J Physiol Endocrinol Metab. 293:E538-547

    PubMed  CAS  Google Scholar 

  99. Graner E, Tang D, Rossi S et al (2004) The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer.Cancer Cell. 5(3):253-261.

    CAS  Google Scholar 

  100. Ciechanover A, Orian A, Schwartz A.L. (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem Suppl. 77: 40–51

    Google Scholar 

  101. Soucy TA, Dick LR, Smith PG et al (2010) The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy. Genes Cancer.1(7):708-16

    PubMed  CAS  Google Scholar 

  102. Yang Y, Kitagati J, Dai RM et al (2007) Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67: 9472–9481

    PubMed  CAS  Google Scholar 

  103. Ceccarelli DF, Tang X, Pelletier B et al (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell. 145: 1075–1087

    PubMed  CAS  Google Scholar 

  104. Azmi AS, Philip PA, Beck FWJ et al (2011) MI-219-zinc combination: a new paradigm in MDM2 inhibitor-based therapy. Oncogene, 30: 117–126

    PubMed  CAS  Google Scholar 

  105. Yuan Y, Liao YM, Hsueh CT et al (2011) Novel and targeted therapeutics: inhibitors of MDM2, ALK, and PARP. J Hematol Oncol. 4: 16

    PubMed  CAS  Google Scholar 

  106. Saha B, Adhikary A, Ray P et al (2012) Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. 31:173-186

    Google Scholar 

  107. Kona FR, Buac D, M Burger A (2011) Disulfiram, and disulfiram derivatives as novel potential anticancer drugs targeting the ubiquitin-proteasome system in both preclinical and clinical studies. Curr Cancer Drug Targets. 11: 338-346.

    Google Scholar 

  108. Shi D, Grossman SR (2010) Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biol. Ther. 10: 737–747

    PubMed  CAS  Google Scholar 

  109. Reverdy C, Conrath S, Lopez R et al (2012) Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol. 19: 467–477

    PubMed  CAS  Google Scholar 

  110. Cummins JM, Rago C, Kohli M et al (2004) Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428: 1

    PubMed  Google Scholar 

  111. Nowis D, Maczewski M, Mackiewicz U et al (2010) Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol. 176: 2658–2568

    PubMed  CAS  Google Scholar 

  112. Orlowski RZ, Stinchcombe TE, Mitchell BS et al (2002) Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol. 20: 4420–4427

    PubMed  CAS  Google Scholar 

  113. Molineaux SM (2010) Molecular pathways: targeting proteasomal protein degradation in cancer. Clin Cancer Res. 18: 15–20

    Google Scholar 

  114. Tsukamoto S, Hirota H, Imachi M et al (2005) Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg Med Chem Lett. 15: 191–194

    PubMed  CAS  Google Scholar 

  115. Tsukamoto S, Takeuchi T, Rotinsulu et al (2008) Leucettamol A: a new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge, Leucetta aff. microrhaphis. Bioorg Med Chem Lett 18: 6319–6320

    Google Scholar 

  116. Lavelle F, Zerial A, Fizames C et al (1991) Antitumor activity and mechanism of action of the marine compound girodazole. Invest New Drugs. 9: 233–244

    PubMed  CAS  Google Scholar 

  117. Verma R, Peters NR, D’Onofrio M et al (2005) Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306: 117–120

    Google Scholar 

  118. Komander D, Clague MJ, Urbe S et al (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 10: 550– 563

    PubMed  CAS  Google Scholar 

  119. Clark RC, Lee SY, Boger DL et al (2008) Total synthesis of chlorofusin, its seven chromophore diastereomers, and key partial structures. J Am Chem Soc. 130: 12355–12369

    PubMed  CAS  Google Scholar 

  120. Cohen P, Tcherpakov M (2010) The ubiquitin system furnish as many drug targets as protein kinases? Cell 143: 686–693

    PubMed  CAS  Google Scholar 

  121. Rock KL, Gramm C, Rothstein L et al (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 78: 761–771

    PubMed  CAS  Google Scholar 

  122. Shigemori H, Wakuri S, Yazawa K et al (1991) Fellutamides A and B, cytotoxic peptides from a marine fish-possessing fungus Penicillium fellutanum. Tetrahedron. 47: 8529–8534.

    CAS  Google Scholar 

  123. Yamaguchi K, Tsuji T, Wakuri S et al (1993) Stimulation of nerve growth factor synthesis and secretion by fellutamide A in vitro. Biosci Biotechnol Biochem. 57: 195–199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by research grants from DST and DBT, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurisankar Sa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhattacharjee, P., Mazumdar, M., Guha, D., Sa, G. (2014). Ubiquitin–Proteasome System in the Hallmarks of Cancer. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_9

Download citation

Publish with us

Policies and ethics