Involvement of Caspases in the Pathophysiology of Neurodegeneration and Stroke

  • Alakananda Goswami
  • Prosenjit Sen
  • Kuladip Jana
  • Sanghamitra Raha
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 8)


A family of proteases known as caspases is a key element in the proteolytic machinery involved in apoptosis or programmed cell death. Apart from their involvement in cell death, caspases are also associated with the developmental process and other normal functions of adult organisms. Caspases are named such because they constitute a family of cysteine proteases which always cleave an Asp residue in their substrates. Stroke results from a rapid malfunctioning of the brain due to lack of blood supply and is a major health threat producing mortality and morbidity. Majority of strokes are ischemic (80 % of all strokes) and the rest are hemorrhagic. Both forms of divergent cell death mechanisms, necrosis, and apoptosis are observed at different spatial region of ischemic attack. Involvement of multiple caspases in stroke has been documented with caspases 1, 3, 8, 9, and 11 playing major roles. Many neurodegenerative diseases result from loss of functional neurons from the brain through enhanced death of neurons. Neurodegenerative diseases are usually late onset and progressive. Among the most common neurodegenerative disorders in aging populations worldwide, Alzheimer’s disease (AD) and Parkinson’s disease (PD) definitely warrant mentioning. Abnormal protein deposits in specific regions of the brain give rise to both these diseases triggering reactive oxygen species formation and mitochondrial dysfunction. Caspases are activated by these changes resulting in loss of neurons through cell death. In this review we provide a brief overview of the involvement of caspases in diseases associated with the impairment of brain function.


Stroke Parkinson’s disease Alzheimer’s disease Caspase Apoptosis 



K.J. acknowledges partial support from the Dept. of Science and Technology, Fast Track Young Scientist Scheme.


  1. 1.
    Rupinder SK, Aulakh KG, Singh M (2007) Cell suicide and caspases. Vascul Pharmacol 46: 383–393PubMedGoogle Scholar
  2. 2.
    Manjo G, Joris I (1995) Apoptosis, oncosis and necrosis An overview of cell death. Am J Pathol 146: 3–15Google Scholar
  3. 3.
    Kanduc D, Mittelman A, Serpico R (2002) Cell death: apoptosis versus necrosis. Int J Oncol 21: 165–170PubMedGoogle Scholar
  4. 4.
    Fernandez-Flores A, Aguilera B, Yau P et al (2002) An old meaning of the word apoptosis. Lancet 359: 1072PubMedGoogle Scholar
  5. 5.
    Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26: 239–257PubMedGoogle Scholar
  6. 6.
    Saraste A, Pulkki K (2000) Morphological and biochemical hallmarks of apoptosis. Cardiovascul Res 45: 528–537Google Scholar
  7. 7.
    Zimmerman KC, Bonzon C, Green DR (2002) The machinery of programmed cell death. Pharmacol Therapeut 92: 57–70Google Scholar
  8. 8.
    Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407: 802–809PubMedGoogle Scholar
  9. 9.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770-776PubMedGoogle Scholar
  10. 10.
    Shi, Y (2002) Mechanism of caspase activation and inhibition during apoptosis. Mol Cell 9: 459–470PubMedGoogle Scholar
  11. 11.
    Yuan J, Shaham S, Ledoux S et al (1993) The C elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652PubMedGoogle Scholar
  12. 12.
    Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature Cell 87: 171PubMedGoogle Scholar
  13. 13.
    Hengartner MO, Horvitz HR (1994) C elegans Cell Survival Gene ced-9 Encodes a Functional Homolog of the Mammalian Proto-Oncogene bcl-2. Cell 76: 665-676PubMedGoogle Scholar
  14. 14.
    Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1βprocessing in monocytes. Nature 356:768–774PubMedGoogle Scholar
  15. 15.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within Science 281:1312-1316Google Scholar
  16. 16.
    Stegh AH, Peter ME (2002) Apoptosis and caspases. Cardiol Clin 19: 13–29Google Scholar
  17. 17.
    Cerrethi DP, Kozlosky CJ, Mosely B et al (1992) Molecular cloning of the interleukin – 1 beta converting enzyme Science 256: 97–100Google Scholar
  18. 18.
    Faucheu C, Diu A, Chan A et al (1995) A novel human protease similar to the interleukin 1 beta-converting enzyme induces apoptosis in transfected cells. EMBO J 14: 1914–1922PubMedGoogle Scholar
  19. 19.
    Munday NA, Vaillancourt, JP, Ali A et al (1995) Molecular cloning and proapoptotic activity of ICE rel II and ICE rel III members of ICE/Ced 3 family of cysteine proteases. J Biol Chem 270: 15870–15876PubMedGoogle Scholar
  20. 20.
    Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspase. Microbiol Mol Biol Rev 64: 821–846PubMedGoogle Scholar
  21. 21.
    Bergeron L, Perez GI, Macdonald G (1998) Defects in regulation of apoptosis in caspase 2 deficient mice. Genes Develop 12: 1304–1309PubMedGoogle Scholar
  22. 22.
    Fernandes AT, Armstrong RC, Krebs J et al (1996) In vitro activation of CPP32, and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD like domains. Proc Natl Acad Sci USA 93: 7464–7469Google Scholar
  23. 23.
    Duan H, Orth K, Chinnaiyan AM et al (1996) ICE/LAP6, a novel member of the ICE/ced 3 gene family, is activated by the cytotoxic T cell protease Granzyme. J Biol Chem 271: 16720–16724PubMedGoogle Scholar
  24. 24.
    Vilta P, Kaufmann SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22: 388–393Google Scholar
  25. 25.
    Sadowski DK, Coy JF, Mier W et al (2002) Caspases—their role in apoptosis and other physiological processes as revealed by knock out studies. Archiv Immun Therap Expl 50: 19–34Google Scholar
  26. 26.
    Thornberry NA (1998) Caspases: key mediators of apoptosis. Chem Biol 5: 97-103Google Scholar
  27. 27.
    Srinivasula SM, Hegde R, Saleh A et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112-116PubMedGoogle Scholar
  28. 28.
    Prior FP, Salvesen SG (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384: 201–232Google Scholar
  29. 29.
    Muzio M, Stockwell BR, Stennicke HR et al (1998) An induced proximity model of caspase-8 activation. J Biol Chem 273: 2926–2930PubMedGoogle Scholar
  30. 30.
    Hofmann K (1999) The modular nature of apoptotic signaling proteins. Cell Mol Life Sci 55:1113–1128PubMedGoogle Scholar
  31. 31.
    Eberstadt M, Baohua Huang B, Chen Z et al (1998) NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392: 941–945PubMedGoogle Scholar
  32. 32.
    Yang J, Liu X, Bhalla K, et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129-1132PubMedGoogle Scholar
  33. 33.
    Green D, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8: 267-271PubMedGoogle Scholar
  34. 34.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309-1312PubMedGoogle Scholar
  35. 35.
    Acehan D, Jiang X, Morgan DG et al (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9: 423-432PubMedGoogle Scholar
  36. 36.
    Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22: 299-306PubMedGoogle Scholar
  37. 37.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281: 1305-1308PubMedGoogle Scholar
  38. 38.
    Garg AK, Aggarwal BB (2002) Reactive oxygen intermediates in TNF signaling. Mol Immunol 39: 509-517PubMedGoogle Scholar
  39. 39.
    Mirkes PE (2002) Warkany lecture: to die or not to die, the role of apoptosis in normal and abnormal mammalian development. Teratol 65: 228-239Google Scholar
  40. 40.
    Yin XM (2000) Bid, a critical mediator for apoptosis induced by the activation of Fas/TNF-R1 death receptors in hepatocytes. J Mol Med 78: 203-211PubMedGoogle Scholar
  41. 41.
    Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Develop 13: 1211-1233PubMedGoogle Scholar
  42. 42.
    Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nature Cell Biol 3: 255-263Google Scholar
  43. 43.
    Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families Activation of caspase-12 by calpain in apoptosis J Cell Biol 150: 887-94PubMedGoogle Scholar
  44. 44.
    Lamkanfi M, Declercq W, Kalai M et al (2002) Alice in caspase land A phylogenetic analysis of caspases from worm to man. Cell Death Diff 9: 358-361Google Scholar
  45. 45.
    Rao RV, Castro-Obregon S, Frankowski H et al (2002) Coupling endoplasmic reticulum stress to the cell death program An Apaf-1-independent intrinsic pathway. J Biol Chem 277: 21836-21842PubMedGoogle Scholar
  46. 46.
    Hacki J, Egger L, Monney L et al (2000) Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19: 2286-2295PubMedGoogle Scholar
  47. 47.
    Trapani JA (1998) Dual mechanisms of apoptosis induction by cytotoxic lymphocytes. Intl Rev Cytol 182: 111-192Google Scholar
  48. 48.
    Konno R, Igarashi T, Okamoto S et al (1999) Apoptosis of human endometrium mediated by perforin and granzyme B of NK cells and cytotoxic T lymphocytes Tohoku. J Expl Med 187:149-155Google Scholar
  49. 49.
    Sutton VR, Wowk ME, Cancilla M et al (2003) Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity 18:319-329PubMedGoogle Scholar
  50. 50.
    Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120: 1707-1716PubMedGoogle Scholar
  51. 51.
    Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired mitochondrial transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res 1415:136-148PubMedGoogle Scholar
  52. 52.
    Meredith SC (2005) Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins. Ann N Y Acad Sci 1066:181-221PubMedGoogle Scholar
  53. 53.
    Forno LS(1996) Neuropathology of Parkinson’s disease. J Neuropathol Expl Neurol 55:259–272Google Scholar
  54. 54.
    Cookson MR (2009) α-Synuclein and neuronal cell death. Mol Neurodegen 4:9Google Scholar
  55. 55.
    Latchoumycandane C, Anantharam V, Jin H et al (2011) Dopaminergic Neurotoxicant 6-OHDA Induces Oxidative Damage through Proteolytic Activation of PKCδ in Cell Culture and Animal Models of Parkinson’s Disease. Toxicol Appl Pharmacol 256: 314–323PubMedGoogle Scholar
  56. 56.
    Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101. doi:pii: S0891-5849(12)01823-0.  10.1016/j.freeradbiomed.2012.11.014. [Epub ahead of print]
  57. 57.
    Moussa CE, Wersinger C, Tomita Y et al (2004) Differential cytotoxicity of human wild type and mutant alpha-synuclein in human neuroblastoma SH-SY5Y cells in the presence of dopamine. Biochemistry 43:5539-5550PubMedGoogle Scholar
  58. 58.
    Cannon JR, Greenamyre JT (2010) Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res 184:17–33PubMedGoogle Scholar
  59. 59.
    Yamada M, Kida K, Amutuhairea W et al (2010) Gene disruption of caspace-3 prevents MPTP-induced Parkinson’s disease in mice Biochem Biophys Res Commun 402: 312–318PubMedGoogle Scholar
  60. 60.
    Viswanath V, Wu Y, Boonplueang R et al (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced Parkinson’s disease. J Neurosci 21:9519–9528PubMedGoogle Scholar
  61. 61.
    Han BS, Hong H, Choi W et al (2003) Caspase-Dependent and -Independent Cell Death Pathways in Primary Cultures of Mesencephalic Dopaminergic Neurons after Neurotoxin Treatment. J Neurosci 23:5069 –5078PubMedGoogle Scholar
  62. 62.
    Tanaka Y, Engelender S , Igarashi S et al (2001) Inducible expression of mutant α- synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Gen 10: 919-926PubMedGoogle Scholar
  63. 63.
    Smith WW, Jiang H, Pei Z (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity Hum Mol Gen 14 (24) 3801–3811Google Scholar
  64. 64.
    Hartmann A, Hunot S, Michel PP et al (2000) Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–80PubMedGoogle Scholar
  65. 65.
    Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Expl Neurol 166:29–43Google Scholar
  66. 66.
    Ho CC, Hardy J Rideout HJ et al (2009) The Parkinson Disease Protein Leucine-Rich Repeat Kinase 2 Transduces Death Signals via Fas-Associated Protein with Death Domain and Caspase-8 in a Cellular Model of Neurodegeneration. J Neurosci 29:1011–1016PubMedGoogle Scholar
  67. 67.
    Reddy PH, Manczak M, Mao P et al (2010) Amyloid beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline J Alz Dis 20 (Suppl 2): S499-S512Google Scholar
  68. 68.
    LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nature Rev Neurosci 8:499–509Google Scholar
  69. 69.
    Awasthi A, Matsunaga Y, Yamada T (2005) Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Expl Neurol 196 : 282–289Google Scholar
  70. 70.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Ann Rev Neurosci 24:1121–1159PubMedGoogle Scholar
  71. 71.
    Oddo S, Caccamo A, Shepherd JD et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421PubMedGoogle Scholar
  72. 72.
    Rohn TT, Vyas V, Hernandez-Estrada T et al (2008) Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J Neurosci 28:3051–3059PubMedGoogle Scholar
  73. 73.
    Couturier J, Morel M, Pontcharraud R et al (2010) Interaction of double stranded RNA-dependent protein kinas (PKR) with the death receptor signaling pathway in amyloid beta (Abeta)-treated cells and in APPSLPS1 knock-in mice. J Biol Chem 285: 1272-1282PubMedGoogle Scholar
  74. 74.
    Zhu X, Chen C, Dan Y et al (2012) Diammonium Glycyrrhizinate Upregulates PGC-1a and Protects againstAb1–42-Induced Neurotoxicity. PLoS One 7:e35823PubMedGoogle Scholar
  75. 75.
    Fossati S, Ghiso J, Rostagno A (2012) TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer’s Aβ. Cell Death Dis (2012) 3: e321; doi:101038/cddis201255Google Scholar
  76. 76.
    Picone P, Carrotta R, Montana G et al (2009) Abeta oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys J 96(10) : 4200-4211PubMedGoogle Scholar
  77. 77.
    Graham RK, Ehrnhoefer DE, Hayden MR (2011) Caspase-6 and neurodegeneration. Trends Neurosci 34:646-656PubMedGoogle Scholar
  78. 78.
    Li M, Ona VO, Guegan C et al (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288:335–339PubMedGoogle Scholar
  79. 79.
    Ona VO, Li M, Vonsattel JP et al (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267PubMedGoogle Scholar
  80. 80.
    Rohn TT (2010) The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis 15: 1403-1409PubMedGoogle Scholar
  81. 81.
    Yang L, Sugama S, Mischak RP et al (2004) A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 17:250–259PubMedGoogle Scholar
  82. 82.
    Caserta TM, Smith AN, Gultice AD et al (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352PubMedGoogle Scholar
  83. 83.
    Braun JS, Prass K, Dirnagl U et al (2007) Protection from brain damage and bacterial infection in murine stroke by the novel caspase-inhibitor Q-VD-OPH. Expl Neurol 206:183–191Google Scholar
  84. 84.
    Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802: 80–91PubMedGoogle Scholar
  85. 85.
    Donnan G A, Fisher M, Macleod M et al (2008) Stroke Lancet 371: 1612–1623Google Scholar
  86. 86.
    Kalaria RN (2012) Risk factors and neurodegenerative mechanisms in stroke related dementia. Panminerva Medica 54:139–148PubMedGoogle Scholar
  87. 87.
    Sharp FR, Jickling GC, Stamova B et al (2011) Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. J Cerebral Blood Flow Metabol 31:1513–1531Google Scholar
  88. 88.
    Gupta A, Chazen JL, Hartman M et al (2012) Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis. Stroke 43: 2884–2891PubMedGoogle Scholar
  89. 89.
    Elkind MSV (2006) Inflammation, atherosclerosis, and stroke. Neurologist 12: 140–148PubMedGoogle Scholar
  90. 90.
    Wardlaw JM, Zoppo G, Yamaguchi T et al (2003) Thrombolysis for acute ischaemic stroke Cochrane database of systematic reviews (Online) CD000213Google Scholar
  91. 91.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568PubMedGoogle Scholar
  92. 92.
    Linnik MD, Zobrist RH, Hatfield MD (1993) Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats Stroke 24: 2002–2008Google Scholar
  93. 93.
    Charriaut-Marlangue C, Aggoun-Zouaoui D, Represa A et al (1996) Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity. Trends Neurosci 19: 109–114PubMedGoogle Scholar
  94. 94.
    Pan J, Konstas A, Bateman B et al (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiol 49: 93–102Google Scholar
  95. 95.
    Friedlander RM, Gagliardini V, Hara H et al (1997) Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Expl Med 185, 933–940Google Scholar
  96. 96.
    Friedlander RM (2000) Role of caspase 1 in neurologic disease. Arch Neurol 57 :1273–1276PubMedGoogle Scholar
  97. 97.
    Kang S J, Wang S, Hara H et al (2000) Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol 149: 613–622PubMedGoogle Scholar
  98. 98.
    Green DR (2011) Immunology: A heavyweight knocked out. Nature 479:48–50PubMedGoogle Scholar
  99. 99.
    Honkaniemi J, Massa SM, Breckinridge M et al (1996) Global ischemia induces apoptosis-associated genes in hippocampus. Mol Brain Res 42:79–88PubMedGoogle Scholar
  100. 100.
    Harrison DC, Davis RP, Bond BC et al (2001) Caspase mRNA expression in a rat model of focal cerebral ischemia. Mol Brain Res 89:133–146PubMedGoogle Scholar
  101. 101.
    Hara H, Fink K, Endres M et al (1997) Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cerebral Blood Flow Metabol 17: 370–375Google Scholar
  102. 102.
    Schielke GP, Yang GY, Shivers BD et al (1998) Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cerebral Blood Flow Metabol 18: 180–185Google Scholar
  103. 103.
    Liu XH, Kwon D, Schielke et al (1999) Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cerebral Blood Flow Metabol 19: 1099–1108Google Scholar
  104. 104.
    Bergeron L, Perez GI, Macdonald G et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Develop 12: 1304–1314PubMedGoogle Scholar
  105. 105.
    Troy CM, Rabacchi SA, Hohl JB et al (2001) Death in the balance: alternative participation of the caspase-2 and −9 pathways in neuronal death induced by nerve growth factor deprivation. J Neurosci 21: 5007–5016PubMedGoogle Scholar
  106. 106.
    Benchoua A, Guégan C, Couriaud C et al (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21: 7127–7134PubMedGoogle Scholar
  107. 107.
    Chen J, Nagayama T, Jin K et al (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18: 4914–4928PubMedGoogle Scholar
  108. 108.
    Le DA, Wu Y, Huang Z et al (2002) Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci USA 99: 15188–15193PubMedGoogle Scholar
  109. 109.
    Krupinski J, Lopez E, Marti E (2000) Expression of caspases and their substrates in the rat model of focal cerebral ischemia. Neurobiol Dis 7: 332–342PubMedGoogle Scholar
  110. 110.
    Namura S, Zhu J, Fink K et al (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18: 3659–3668PubMedGoogle Scholar
  111. 111.
    Cao G, Luo Y, Nagayama T et al (2002) Cloning and characterization of rat caspase-9: implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia. J Cerebral Blood Flow Metabol 22:534–546Google Scholar
  112. 112.
    Akpan N, Troy CM (2012) Caspase Inhibitors: Prospective Therapies for Stroke Neuroscientist 19: 129-136Google Scholar
  113. 113.
    Martin-Villalba A, Hahne M, Kleber S et al (2001) Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Diff 8, 679–686Google Scholar
  114. 114.
    Al-Jamal K T, Gherardini L, Bardi G et al (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA 108, 10952–10957PubMedGoogle Scholar
  115. 115.
    Endres M, Namura S, Shimizu-Sasamata M et al (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cerebral Blood Flow Metabol 18: 238–247Google Scholar
  116. 116.
    Akpan N, Serrano-Saiz E, Zacharia BE et al (2011) Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci 31: 8894–8904PubMedGoogle Scholar
  117. 117.
    Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharmaceut Sci 99: 1654–1673Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alakananda Goswami
    • 1
    • 2
  • Prosenjit Sen
    • 3
  • Kuladip Jana
    • 4
  • Sanghamitra Raha
    • 1
    • 5
  1. 1.Crystallography & Molecular Biology DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.SN Surgicare & Healthcare Science Private Limited (Associated Company of NSIC, Govt. of India enterprise)Barasat, KolkataIndia
  3. 3.Department of Biological ChemistryIndian Association for the Cultivation of ScienceKolkataIndia
  4. 4.Department of Molecular MedicineBose InstituteKolkataIndia
  5. 5.Department of BiotechnologyVisva Bharati UniversityShantiniketanIndia

Personalised recommendations