Matrix Metalloprotease-2 in the Development and Progression of Cardiovascular Diseases

  • Soumitra Roy
  • Tapati Chakraborti
  • Soni Shaikh
  • Animesh Chowdhury
  • Sajal Chakraborti
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 8)


Matrix metalloproteases (MMPs) are a family of proteolytic enzymes that are regulated by a variety of signals that mediate changes in extracellular matrix (ECM). MMPs are important in the progression of cardiovascular diseases. MMP activation modifies the plaque architecture and may also be involved in the process of plaque rupture. MMPs participate in cardiac remodeling following myocardial infarction and in the development of cardiomyopathy. Among the MMPs, MMP-2 is one of the most ubiquitous members of the MMP family and is expressed in all cells of the heart. In the past two decades, there has been tremendous progress in understanding the role of MMP-2 in the development of cardiovascular pathology. In this review, we discuss the implications of MMP-2 in the progression and development of different types of cardiovascular diseases such as atherosclerosis, myocardial infarction, cardiomyopathy, and heart failure.


Matrix metalloproteases Matrix metalloprotease-2 Cardiovascular diseases Hypertension Atherosclerosis Restenosis Heart failure Left ventricular remodeling Aneurysm Thrombosis 



Financial assistance from the Department of Atomic Energy (Govt. of India), Council of Scientific and Industrial Research (Govt. of India), and the Department of Biotechnology (Govt. of India) is greatly acknowledged.


  1. 1.
    Global status report on noncommunicable diseases 2010. Geneva, World Health Organization, 2011.Google Scholar
  2. 2.
    Yusuf S, Reddy S, Ounpuu S, et al (2001a) Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104: 2746–2753PubMedCrossRefGoogle Scholar
  3. 3.
    Yusuf S, Reddy S, Ounpuu S, et al (2001b) Global burden of cardiovascular diseases: part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation 104: 2855–2864PubMedCrossRefGoogle Scholar
  4. 4.
    Lijnen HR (2003) Metalloproteinases in development and progression of vascular disease. Pathophysiol Haemost Thromb 33: 275–281PubMedCrossRefGoogle Scholar
  5. 5.
    Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85: 1–31PubMedCrossRefGoogle Scholar
  6. 6.
    Keeling WB, Armstrong PA, Stone PA, et al (2005) An overview of matrix metalloproteinases in the pathogenesis and treatment of abdominal aortic aneurysms. Vasc Endovascular Surg 39: 457–464PubMedCrossRefGoogle Scholar
  7. 7.
    Katholi RE, Couri DM (2011) Left Ventricular Hypertrophy: Major Risk Factor in Patients with Hypertension: Update and Practical Clinical Applications. International Journal of Hypertension 2011: 495349PubMedCrossRefGoogle Scholar
  8. 8.
    Kandasamy AD, Chow AK, Ali MA, et al (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85: 413–423PubMedCrossRefGoogle Scholar
  9. 9.
    Kuzuya M, Nakamura K, Sasaki T, et al (2006) Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol. 26: 1120–1125PubMedCrossRefGoogle Scholar
  10. 10.
    Katsaros KM, Kastl SP, Zorn G, et al (2010) Increased restenosis rate after implantation of drug-eluting stents in patients with elevated serum activity of matrix metalloproteinase-2 and −9. JACC Cardiovasc Interv 3: 90–97PubMedCrossRefGoogle Scholar
  11. 11.
    Tziakas DN, Chalikias GK, Papaioakeim M, et al (2005) Comparison of levels of matrix metalloproteinase-2 and −3 in patients with ischemic cardiomyopathy versus non ischemic cardiomyopathy. Am J Cardiol 96: 1449–1451PubMedCrossRefGoogle Scholar
  12. 12.
    Yamazaki T, Lee JD, Shimizu H, et al (2004) Circulating matrixmetalloproteinase-2 is elevated in patients with congestive heart failure. Eur J Heart Fail 6: 41–45PubMedCrossRefGoogle Scholar
  13. 13.
    Hayashidani S, Tsutsui H, Ikeuchi M, et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285: H1229-H1235PubMedGoogle Scholar
  14. 14.
    Longo GM, Xiong W, Greiner TC, et al (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110: 625–632PubMedGoogle Scholar
  15. 15.
    Siefert SA, Sarkar R (2012) Matrix metalloproteinases in vascular physiology and disease. Vascular 20: 210–216PubMedCrossRefGoogle Scholar
  16. 16.
    Black HR (2003) The burden of cardiovascular disease: following the link from hypertension to myocardial infarction and heart failure. Am J Hypertension 16: 4–6CrossRefGoogle Scholar
  17. 17.
    Lemaitre V, D’Armiento J (2006) Matrix metalloproteinases in development and disease. Birth Defects Res C Embryo Today 78: 1–10PubMedCrossRefGoogle Scholar
  18. 18.
    Spinale FG (2007) Myocardial Matrix Remodeling and the Matrix Metalloproteinase: Influence on Cardiac Form and Function. Physiol Rev 87: 1285–1342PubMedCrossRefGoogle Scholar
  19. 19.
    Integan HD, Schiffrin EL (2001) Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38: 581–587CrossRefGoogle Scholar
  20. 20.
    Derosa G, D’Angelo A, Ciccarelli L, et al (2006) Matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium 13: 227–231PubMedCrossRefGoogle Scholar
  21. 21.
    Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPS. Cardiovascular Research 69: 562–573PubMedCrossRefGoogle Scholar
  22. 22.
    Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90: 251–62PubMedGoogle Scholar
  23. 23.
    Zervoudaki A, Economou E, Stefanadis C, et al (2003) Plasma levels of active extracellular matrix metalloproteinase 2 and 9 in patients with essential hypertension before and after antihypertensive treatment. J Hum Hypertension 17: 119–124CrossRefGoogle Scholar
  24. 24.
    DeLano FA, Schmid-Schonbein GW (2008) Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension 52: 415–423PubMedCrossRefGoogle Scholar
  25. 25.
    Rodrigues SF, Tran ED, Fortes ZB, et al (2010) Matrix Metalloproteinases Cleave the β2 Adrenergic Receptor in Spontaneously Hypertensive Rats. Am J Physiol Heart Circ Physiol 299: H25-35PubMedCrossRefGoogle Scholar
  26. 26.
    Tran ED, DeLano FA, Schmid-Schonbein GW (2010) Enhanced Matrix Metalloproteinase Activity in the Spontaneously Hypertensive Rat: VEGFR-2 Cleavage, Endothelial Apoptosis, and Capillary Rarefaction. J Vasc Res 47: 423–431PubMedCrossRefGoogle Scholar
  27. 27.
    Chen AY, DeLano FA, Valdez SR, et al (2010) Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously hypertensive rat. Am J Physiol Cell Physiol 299: C1441-1449PubMedCrossRefGoogle Scholar
  28. 28.
    Chen YY, Doggrell SA (2002) Responsiveness, affinity constants and beta-adrenoceptor reserves for isoprenaline on aortae from normo-, pre- and hypertensive rats. J Pharm Pharmacol 54: 515–522PubMedCrossRefGoogle Scholar
  29. 29.
    Naslund T, Silberstein DJ, Merrell WJ, et al (1990) Low sodium intake corrects abnormality in beta-receptor-mediated arterial vasodilation in patients with hypertension: correlation with beta-receptor function in vitro. Clin Pharmacol Ther 48: 87–95PubMedCrossRefGoogle Scholar
  30. 30.
    Virmani R, Burke AP, Farb A, et al (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47: C13-C18PubMedCrossRefGoogle Scholar
  31. 31.
    Pauly RR, Passaniti A, Bilato C, et al (1994) Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ Res 75: 41–54PubMedCrossRefGoogle Scholar
  32. 32.
    Bendeck MP, Zempo N, Clowes AW, et al (1994) Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 75: 539–545PubMedCrossRefGoogle Scholar
  33. 33.
    Dollery CM, Libby P (2006) Atherosclerosis and proteinase activation. Cardiovasc Res 69: 625–635PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson JL, Van Eys GJ, Angelini GD, et al (2001) Injury induces differentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol 21: 1146–1151PubMedCrossRefGoogle Scholar
  35. 35.
    Galis ZS, Kranzhofer R, Fenton JW, et al (1997) Thrombin promotes activation of matrix metalloproteinase-2 produced by cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17: 483–489PubMedCrossRefGoogle Scholar
  36. 36.
    Rajavashisth TB, Liao JK, Galis ZS, et al (1999) Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase. J Biol Chem 274: 11924–11929PubMedCrossRefGoogle Scholar
  37. 37.
    Mandal M, Mandal A, Das S, et al (2003) Clinical implications of matrix metalloproteinases. Mol Cell Biochem 252: 305–329PubMedCrossRefGoogle Scholar
  38. 38.
    Galis ZS, Sukhova GK, Lark MW, et al (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493–2503PubMedCrossRefGoogle Scholar
  39. 39.
    Galis ZS, Sukhova GK, Kranzhofer R, et al (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 92: 402–406PubMedCrossRefGoogle Scholar
  40. 40.
    Li Z, Li L, Zielke HR, et al (1996) Increased expression of 72-kd type IV collagenase (MMP-2) in human aortic atherosclerotic lesions. Am J Pathol 148: 121–128PubMedGoogle Scholar
  41. 41.
    Tyagi SC, Campbell SE, Reddy HK, et al (1996) Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155: 13–21PubMedCrossRefGoogle Scholar
  42. 42.
    Kameda K, Matsunaga T, Abe N, et al (2006) Increased pericardial fluid level of matrix metalloproteinase-9 activity in patients with acute myocardial infarction: possible role in the development of cardiac rupture. Circ J 70: 673–678PubMedCrossRefGoogle Scholar
  43. 43.
    Herzog E, Gu AG, Kohmoto T, et al (1998) Early activation of metalloproteinases after experimental myocardial infarction occurs in infarct and non-infarct zones. Cardiovasc Pathol 7: 307–312CrossRefGoogle Scholar
  44. 44.
    Cleutjens JP, Kandala JC, Guarda E, et al (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27: 1281–1292PubMedCrossRefGoogle Scholar
  45. 45.
    Chen J, Tung CH, Allport JR, et al (2005) Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111: 1800–1805PubMedCrossRefGoogle Scholar
  46. 46.
    Kai H, Ikeda H, Yasukawa H, et al (1998) Peripheral blood levels of matrix metalloproteases-2 and −9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 32: 368–372PubMedCrossRefGoogle Scholar
  47. 47.
    Matsumura S, Iwanaga S, Mochizuki S, et al (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115: 599–609PubMedGoogle Scholar
  48. 48.
    Podesser BK, Siwik DA, Eberli FR, et al (2001) ET(A)-receptor blockade prevents matrix metalloproteinase activation late post myocardial infarction in the rat. Am J Physiol Heart Circ Physiol 280: H984-H991PubMedGoogle Scholar
  49. 49.
    Matsunaga T, Abe N, Kameda K, et al (2005) Circulating level of gelatinase activity predicts ventricular remodeling in patients with acute myocardial infarction. Int J Cardiol 105: 203–208PubMedCrossRefGoogle Scholar
  50. 50.
    Tian H, Huang ML, Liu KY, et al (2012) Inhibiting matrix metalloproteinase by cell-based timp-3 gene transfer effectively treats acute and chronic ischemic cardiomyopathy. Cell Transplant 21: 1039–1053PubMedCrossRefGoogle Scholar
  51. 51.
    Ramani R, Nilles K, Gibson G, et al (2011) Tissue inhibitor of metalloproteinase-2 gene delivery ameliorates post infarction cardiac remodeling. Clin Transl Sci 4: 24–31PubMedCrossRefGoogle Scholar
  52. 52.
    Gunja-Smith Z, Morales AR, Romanelli R, et al (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148: 1639–1648PubMedGoogle Scholar
  53. 53.
    Rouet-Benzineb P, Buhler JM, Dreyfus P, et al (1999) Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP-9 in myosin-heavy chain degradation. Eur J Heart Fail 1: 337–352PubMedCrossRefGoogle Scholar
  54. 54.
    Noji Y, Shimizu M, Ino H, et al (2004) Increased circulating matrixmetalloproteinase-2 in patients with hypertrophic cardiomyopathy with systolic dysfunction. Circ J 68: 355–360PubMedCrossRefGoogle Scholar
  55. 55.
    Kitaoka H, Kubo T, Okawa M, et al (2010) Impact of metalloproteinases on left ventricular remodeling and heart failure events in patients with hypertrophic cardiomyopathy. Circ J 74: 1191–1196PubMedCrossRefGoogle Scholar
  56. 56.
    Kitaoka H, Kubo T, Okawa M, et al (2011) Plasma metalloproteinase levels and left ventricular remodeling in hypertrophic cardiomyopathy in patients with an identical mutation. J Cardiol 58: 261–265PubMedCrossRefGoogle Scholar
  57. 57.
    Yaras N, Sariahmetoglu M, Bilginoglu A, et al (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155: 1174–1184PubMedCrossRefGoogle Scholar
  58. 58.
    Gutierrez FR, Lalu MM, Mariano FS, et al (2008) Increased activities of cardiac matrix metalloproteinases (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental Trypanosoma cruzi infection. J Infect Dis 197: 1468–1476PubMedCrossRefGoogle Scholar
  59. 59.
    Matsusaka H, Ikeuchi M, Matsushima S, et al (2005) Selective disruption of MMP-2 gene exacerbates myocardial inflammation and dysfunction in mice with cytokine-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 289: H1858-H1864PubMedCrossRefGoogle Scholar
  60. 60.
    Altieri P, Brunelli C, Garibaldi S, et al (2003) Metalloproteinases 2 and 9 are increased in plasma of patients with heart failure. Eur J Clin Invest 33: 648–656PubMedCrossRefGoogle Scholar
  61. 61.
    Mujumdar VS, Smiley LM, Tyagi SC (2001) Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength. Int J Cardiol 79: 277–286PubMedCrossRefGoogle Scholar
  62. 62.
    Peterson JT, Hallak H, Johnson L, et al (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103: 2303–2309PubMedCrossRefGoogle Scholar
  63. 63.
    Li H, Simon H, Bocan TM, et al (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46: 298–306PubMedCrossRefGoogle Scholar
  64. 64.
    Hojo Y, Ikeda U, Katsuki Ta, et al (2002) Matrix metalloproteinase expression in the coronary circulation induced by coronary angioplasty. Atherosclerosis 161: 185–192PubMedCrossRefGoogle Scholar
  65. 65.
    Liu YN, Pan SL, Peng CY, et al (2006) YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole] inhibits neointima formation in balloon-injured rat carotid through suppression of expressions and activities of matrix metalloproteinases 2 and 9. J Pharmacol Exp Ther 316: 35–41PubMedCrossRefGoogle Scholar
  66. 66.
    Thompson RW (2005) Aneurysm treatments expand. Nat Med 11: 1279–1281PubMedCrossRefGoogle Scholar
  67. 67.
    Palinski W (2004) Aneurysms: leukotrienes weaken aorta from the outside. Nat Med 10: 896–898PubMedCrossRefGoogle Scholar
  68. 68.
    Carmeliet P (2000) Proteinases in cardiovascular aneurysms and rupture: targets for therapy? J Clin Invest 105: 1519–1520PubMedCrossRefGoogle Scholar
  69. 69.
    Yamawaki-Ogata A, Hashizume R, Satake M, et al (2010) A doxycycline loaded, controlled-release, biodegradable fiber for the treatment of aortic aneurysms. Biomaterials 31: 9554–9564PubMedCrossRefGoogle Scholar
  70. 70.
    Thompson M, Cockerill G (2006) Matrix metalloproteinase-2: the forgotten enzyme in aneurysm pathogenesis. Ann N Y Acad Sci 1085: 170–174PubMedCrossRefGoogle Scholar
  71. 71.
    Chakraborti T, Mandal A, Mandal M, et al (2000) Complement activation in heart diseases. Role of oxidants. Cell Signal 12: 607–617PubMedCrossRefGoogle Scholar
  72. 72.
    Homeister JW, Lucchesi BR (1994) Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol 34: 17–40PubMedCrossRefGoogle Scholar
  73. 73.
    Gardinali M, Conciato L, Cafaro C, et al (1995) Complement system in coronary heart disease: a review. Immunopharmacology 30: 105–117PubMedCrossRefGoogle Scholar
  74. 74.
    Lucchesi BR (1990) Modulation of leukocyte-mediated myocardial reperfusion injury. Annu Rev Physiol 52: 561–576PubMedCrossRefGoogle Scholar
  75. 75.
    Murohara T, Guo JP, Delyani JA, et al (1995) Cardio protective effects of selective inhibition of the two complement activation pathways in myocardial ischemia and reperfusion injury. Methods Find Exp Clin Pharmacol 17: 499–507PubMedGoogle Scholar
  76. 76.
    Cybulsky AV, Takano T, Papillon J, et al (2000) Complement-induced phospholipase A2 activation in experimental membranous nephropathy. Kidney Int 57: 1052–1062PubMedCrossRefGoogle Scholar
  77. 77.
    Karin M, Delhase M (1998) JNK or IKK, AP-1 or NF-kappaB, which are the targets for MEK kinase 1 action? Proc Natl Acad Sci U S A 95: 9067–9069PubMedCrossRefGoogle Scholar
  78. 78.
    Roy S, Chakraborti T, Chowdhury A, et al (2013) Role of PKC-α inNF-κB-MT1-MMP-mediated activation of proMMP-2 by TNF-α in pulmonary artery smooth muscle cells. J Biochem 153: 289–302PubMedCrossRefGoogle Scholar
  79. 79.
    Wu G, Chen T, Shahsafaei A, et al (2010) Complement regulator CD59 protects against angiotensin II-induced abdominal aortic aneurysms in mice. Circulation 121: 1338–1346PubMedCrossRefGoogle Scholar
  80. 80.
    Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77: 863–868PubMedCrossRefGoogle Scholar
  81. 81.
    Ikeda U, Shimada K (2003) Matrix metalloproteinases and coronary artery diseases. Clin Cardiol 26: 55–59PubMedCrossRefGoogle Scholar
  82. 82.
    Jennings LK (2009) Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 102: 248–257PubMedGoogle Scholar
  83. 83.
    Davì G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357: 2482–2494PubMedCrossRefGoogle Scholar
  84. 84.
    Bouchard BA, Tracy PB (2001) Platelets, leukocytes, and coagulation. Curr Opin Hematol 8: 263–269PubMedCrossRefGoogle Scholar
  85. 85.
    Radomski A, Stewart MW, Jurasz P, et al (2001) Pharmacological characteristics of solid-phase von Willebrand factor in human platelets. Br J Pharmacol 134: 1013–1020PubMedCrossRefGoogle Scholar
  86. 86.
    Sawicki G, Sanders EJ, Salas E, et al (1998) Localization and translocation of MMP-2 during aggregation of human platelets. Thromb Haemost 80: 836–839PubMedGoogle Scholar
  87. 87.
    Kazes I, Elalamy I, Sraer JD, Hatmi M, Nguyen G (2000) Platelet release of tri molecular complex components MT1-MMP/TIMP2/MMP2: involvement in MMP2 activation and platelet aggregation. Blood 96: 3064–3069PubMedGoogle Scholar
  88. 88.
    Deryugina EI, Ratnikov B, Monosov E, et al (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263: 209–223PubMedCrossRefGoogle Scholar
  89. 89.
    Chakraborti S, Mandal M, Das S, et al (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253: 269–285PubMedCrossRefGoogle Scholar
  90. 90.
    Momi S, Falcinelli E, Giannini S, et al (2009) Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo. J Exp Med 206: 2365–2379PubMedCrossRefGoogle Scholar
  91. 91.
    Jurasz P, Chung AW, Radomski A, et al (2002) Non remodeling properties of matrix metalloproteinases: the platelet connection. Circ Res 90: 1041–1043PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Soumitra Roy
    • 1
  • Tapati Chakraborti
    • 1
  • Soni Shaikh
    • 1
  • Animesh Chowdhury
    • 1
  • Sajal Chakraborti
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations