A Disintegrin and Metalloproteinase-12 as a New Target for Cancer Treatment

Chapter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 8)

Abstract

Metastatic spread of cancer is a leading cause for the loss of life from this disease. In metastatic cascade, cells undergo multifaceted phenotypic transformations that include breakdown of extracellular matrix (ECM) encasing the tumor, cancer cell migration and invasion of surrounding tissues, and relocation of cancer cells in secondary organs. Recently a multitasking protein, A Disintegrin and Metalloprotease-12 (ADAM-12), has attracted particular interest because of its potential roles in tumor growth and development by facilitating remodeling of extracellular matrix and cell migration that are so essential for cancer growth and metastasis. ADAM-12 is an active metalloproteinase; it regulates release of growth factors and is capable of promoting cell–cell and cell–matrix adhesion and cell signaling as well. Overexpression of ADAM-12 is reported in many types of human cancers. Furthermore, a statistical correlation between the urinary levels of ADAM-12 in breast and bladder cancer patients and cancer progression has been found. These results suggested that ADAM-12 could be used as a diagnostic marker. In addition to cancers, increase of ADAM-12 expression is linked to the pathogenesis of osteoarthritis, cardiac hypertrophy, and Alzheimer’s disease, as well as during high-fat diet-induced obesity. This review is meant to provide a broad overview of the regulatory pathways by which ADAM-12 could be expressed to contribute towards tumor development, accelerate tumor progression, and metastasis. A better understanding of the regulation of this multifunctional protein that could well be used as a new therapeutic option.

Keywords

ADAM-12 Gene expression Breast cancer Anticancer therapy Transcription factors Cellular interactions Z-DNA Epigenetic regulation 

References

  1. 1.
    Kveiborg M, Albrechtsen R, Couchman JR et al (2008) Cellular roles of ADAM12 in health and disease. Int J Biochem Cell B 40:1685-702.CrossRefGoogle Scholar
  2. 2.
    Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Bio 6:32-43.CrossRefGoogle Scholar
  3. 3.
    White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15:598-606.PubMedCrossRefGoogle Scholar
  4. 4.
    Wiesner S, Legate KR and Fassler R (2005) Integrin-actin interactions. Cell Mol Life Sci 62:1081-99.PubMedCrossRefGoogle Scholar
  5. 5.
    Stocker W, Grams F, Baumann U, et al (1995) The metzincins–topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823-40.PubMedCrossRefGoogle Scholar
  6. 6.
    Roy R, Wewer UM, Zurakowski D, et al (2004) ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 279:51323-30.PubMedCrossRefGoogle Scholar
  7. 7.
    Asakura M, Kitakaze M, Takashima S, et al (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35-40.PubMedCrossRefGoogle Scholar
  8. 8.
    Eto K, Puzon-McLaughlin W, Sheppard D, et al (2000) RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. J Biol Chem 275:34922-30.PubMedCrossRefGoogle Scholar
  9. 9.
    Iba K, Albrechtsen R, Gilpin B, et al (2000) The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to β1 integrin-dependent cell spreading. J Cell Biol 149:1143-56.PubMedCrossRefGoogle Scholar
  10. 10.
    Peduto L, Reuter VE, Sehara-Fujisawa A, et al (2006) ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene 25:5462-6.PubMedCrossRefGoogle Scholar
  11. 11.
    Le Pabic H, Bonnier D, Wewer UM, et al (2003) ADAM12 in human liver cancers: TGF-β-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37:1056-66.PubMedCrossRefGoogle Scholar
  12. 12.
    Frohlich C, Albrechtsen R, Dyrskjot L, et al (2006) Molecular profiling of ADAM12 in human bladder cancer. Clin Cancer Res 12:7359-68.PubMedCrossRefGoogle Scholar
  13. 13.
    Kodama T, Ikeda E, Okada A, et al (2004) ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathology 165:1743-53.CrossRefGoogle Scholar
  14. 14.
    Tian BL, Wen JM, Zhang M, et al (2002) The expression of ADAM12 (meltrin alpha) in human giant cell tumours of bone. Mol Pathology 55:394-7.CrossRefGoogle Scholar
  15. 15.
    Lendeckel U, Kohl J, Arndt M, et al (2005) Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin 131:41-8.CrossRefGoogle Scholar
  16. 16.
    Carl-McGrath S, Lendeckel U, Ebert M, et al (2005) The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol 26:17-24.PubMedGoogle Scholar
  17. 17.
    Mino N, Miyahara R, Nakayama E, et al (2009) A disintegrin and metalloprotease 12 (ADAM12) is a prognostic factor in resected pathological stage I lung adenocarcinoma. J Surg Oncol 100:267-72.PubMedCrossRefGoogle Scholar
  18. 18.
    Fedak PW, Moravec CS, McCarthy PM, et al (2006) Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation 113:238-45.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang X, Oka T, Chow FL, et al (2009) Tumor necrosis factor-alpha-converting enzyme is a key regulator of agonist-induced cardiac hypertrophy and fibrosis. Hypertension 54:575-82.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang X, Chow FL, Oka T, et al (2009) Matrix metalloproteinase-7 and ADAM-12 (a disintegrin and metalloproteinase-12) define a signaling axis in agonist-induced hypertension and cardiac hypertrophy. Circulation 119:2480-9.PubMedCrossRefGoogle Scholar
  21. 21.
    Okada A, Mochizuki S, Yatabe T, et al (2008) ADAM-12 (meltrin alpha) is involved in chondrocyte proliferation via cleavage of insulin-like growth factor binding protein 5 in osteoarthritic cartilage. Arthritis Rheum 58:778-89.PubMedCrossRefGoogle Scholar
  22. 22.
    Ma G, Ainola M, Liljestrom M, et al (2005) Increased expression and processing of ADAM 12 (meltrin-alpha) in osteolysis associated with aseptic loosening of total hip replacement implants. J Rheumatol 32:1943-50.PubMedGoogle Scholar
  23. 23.
    Masaki M, Kurisaki T, Shirakawa K et al (2005) Role of meltrin α (ADAM12) in obesity induced by high-fat diet. Endocrinology 146:1752-63.PubMedCrossRefGoogle Scholar
  24. 24.
    Malinin NL, Wright S, Seubert P, et al (2005) Amyloid-beta neurotoxicity is mediated by FISH adapter protein and ADAM12 metalloprotease activity. Proc Natl Acad Sci U S A 102:3058-63.PubMedCrossRefGoogle Scholar
  25. 25.
    Yagami-Hiromasa T, Sato T, Kurisaki T, et al (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652-6.PubMedCrossRefGoogle Scholar
  26. 26.
    Gilpin BJ, Loechel F, Mattei MG, et al (1998) A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J Biol Chem 273:157-66.PubMedCrossRefGoogle Scholar
  27. 27.
    Ray BK, Dhar S, Shakya A et al (2011) Z-DNA-forming silencer in the first exon regulates human ADAM-12 gene expression. Proc Natl Acad Sci U S A 108:103-8.PubMedCrossRefGoogle Scholar
  28. 28.
    Taniguchi Y, Doronbekov K, Yamada T, et al (2008) Genomic organization and promoter analysis of the bovine ADAM12 gene. Anim Biotechnol 19:178-89.PubMedCrossRefGoogle Scholar
  29. 29.
    Horiuchi K, Le Gall S, Schulte M, et al (2007) Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 18:176-88.PubMedCrossRefGoogle Scholar
  30. 30.
    Ito N, Nomura S, Iwase A, et al (2004) ADAMs, a disintegrin and metalloproteinases, mediate shedding of oxytocinase. Biochem Bioph Res Co 314:1008-13.CrossRefGoogle Scholar
  31. 31.
    Dyczynska E, Sun D, Yi H, et al (2007) Proteolytic processing of delta-like 1 by ADAM proteases. J Biol Chem 282:436-44.PubMedCrossRefGoogle Scholar
  32. 32.
    Loechel F, Fox JW, Murphy G, et al (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. [erratum appears in Biochem Bioph Res Co 2001 Jan 12;280(1):421]. Biochem Bioph Res Co 278:511-5.Google Scholar
  33. 33.
    Borneman A, Kuschel R and Fujisawa-Sehara A (2000) Analysis for transcript expression of meltrin alpha in normal, regenerating, and denervated rat muscle. J Muscle Res Cell M 21:475-80.CrossRefGoogle Scholar
  34. 34.
    Galliano MF, Huet C, Frygelius J, et al (2000) Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, α -actinin-2, is required for myoblast fusion. J Biol Chem 275:13933-9.PubMedCrossRefGoogle Scholar
  35. 35.
    Harsha A, Stojadinovic O, Brem H, et al (2008) ADAM12: a potential target for the treatment of chronic wounds. J Mol Med 86:961-9.PubMedCrossRefGoogle Scholar
  36. 36.
    Verrier S, Hogan A, McKie N et al (2004) ADAM gene expression and regulation during human osteoclast formation. Bone 35:34-46.PubMedCrossRefGoogle Scholar
  37. 37.
    Kveiborg M, Albrechtsen R, Rudkjaer L, et al (2006) ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation. J Bone Miner Res 21:1288-96.PubMedCrossRefGoogle Scholar
  38. 38.
    Kawaguchi N, Sundberg C, Kveiborg M, et al (2003) ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. J Cell Sci 116:3893-904.PubMedCrossRefGoogle Scholar
  39. 39.
    Loechel F, Overgaard MT, Oxvig C, et al (1999) Regulation of human ADAM 12 protease by the prodomain. Evidence for a functional cysteine switch. J Biol Chem 274:13427-33.PubMedCrossRefGoogle Scholar
  40. 40.
    Cao Y, Kang Q, Zhao Z et al (2002) Intracellular processing of metalloprotease disintegrin ADAM12. J Biol Chem 277:26403-11.PubMedCrossRefGoogle Scholar
  41. 41.
    Shi Z, Xu W, Loechel F, et al (2000) ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem 275:18574-80.PubMedCrossRefGoogle Scholar
  42. 42.
    Iba K, Albrechtsen R, Gilpin BJ, et al (1999) Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol 154:1489-501.PubMedCrossRefGoogle Scholar
  43. 43.
    Zolkiewska A (1999) Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain. Exp Cell Res 252:423-31.PubMedCrossRefGoogle Scholar
  44. 44.
    Kang Q, Cao Y and Zolkiewska A (2001) Direct interaction between the cytoplasmic tail of ADAM 12 and the Src homology 3 domain of p85alpha activates phosphatidylinositol 3-kinase in C2C12 cells. Journal of Biological Chemistry 276:24466-72.PubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki A, Kadota N, Hara T, et al (2000) Meltrin alpha cytoplasmic domain interacts with SH3 domains of Src and Grb2 and is phosphorylated by v-Src. Oncogene 19:5842-50.PubMedCrossRefGoogle Scholar
  46. 46.
    Bourd-Boittin K, Le Pabic H, Bonnier D, et al (2008) RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis. J Biol Chem 283:26000-9.PubMedCrossRefGoogle Scholar
  47. 47.
    Ron D, Chen CH, Caldwell J, et al (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. [Erratum appears in Proc Natl Acad Sci U S A 1995 Feb 28;92(5):2016]. Proc Natl Acad Sci U S A 91:839-43.Google Scholar
  48. 48.
    Kveiborg M, Frohlich C, Albrechtsen R, et al (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65:4754-61.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou Z, Ran YL, Hu H, et al (2008) TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis 25:537-48.PubMedCrossRefGoogle Scholar
  50. 50.
    Ray A, Dhar S and Ray BK (2010) Transforming growth factor-beta1-mediated activation of NF-κB contributes to enhanced ADAM-12 expression in mammary carcinoma cells. Mol Cancer Res 8:1261-70.PubMedCrossRefGoogle Scholar
  51. 51.
    Solomon E, Li H, Muggy SD, et al (2010) The role of SnoN in transforming growth factor beta1-induced expression of metalloprotease-disintegrin ADAM12. J Biol Chem 285:21969-77.PubMedCrossRefGoogle Scholar
  52. 52.
    Le Pabic H, L’Helgoualc’h A, Coutant A, et al (2005) Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells. J Hepatol 43:1038-44.PubMedCrossRefGoogle Scholar
  53. 53.
    Barter MJ, Pybus L, Litherland GJ, et al (2010) HDAC-mediated control of ERK- and PI3K-dependent TGF-induced extracellular matrix-regulating genes. Matrix Biol 29:602-12.PubMedCrossRefGoogle Scholar
  54. 54.
    Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349-52.PubMedCrossRefGoogle Scholar
  55. 55.
    Paranjape SM, Kamakaka RT and Kadonaga JT (1994) Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 63:265-97.PubMedCrossRefGoogle Scholar
  56. 56.
    Marks PA, Richon VM, Breslow R et al (2001) Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 13:477-83.PubMedCrossRefGoogle Scholar
  57. 57.
    Johnstone RW and Licht JD (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4:13-8.PubMedCrossRefGoogle Scholar
  58. 58.
    Rich A and Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4:566-72.PubMedCrossRefGoogle Scholar
  59. 59.
    Ray BK, Dhar, S., Henry, C., et al (2013) Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MeCP2 and NF1 transcription factor family. Cancer Res 73:736-744.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang AH, Quigley GJ, Kolpak FJ, et al (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680-6.PubMedCrossRefGoogle Scholar
  61. 61.
    Nordheim A and Rich A (1983) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303:674-9.PubMedCrossRefGoogle Scholar
  62. 62.
    Liu R, Liu H, Chen X, et al (2001) Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106:309-18.PubMedCrossRefGoogle Scholar
  63. 63.
    Rothenburg S, Koch-Nolte F, Rich A et al (2001) A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci U S A 98:8985-90.PubMedCrossRefGoogle Scholar
  64. 64.
    Mori Y, Folco E and Koren G (1995) GH3 cell-specific expression of Kv1.5 gene. Regulation by a silencer containing a dinucleotide repetitive element. J Biol Chem 270:27788-96.PubMedCrossRefGoogle Scholar
  65. 65.
    Hamada H and Kakunaga T (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396-8.PubMedCrossRefGoogle Scholar
  66. 66.
    Khuu P, Sandor M, DeYoung J et al (2007) Phylogenomic analysis of the emergence of GC-rich transcription elements. Proc Natl Acad Sci U S A 104:16528-33.PubMedCrossRefGoogle Scholar
  67. 67.
    Gebhardt F, Zanker KS and Brandt B (1999) Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 274:13176-80.PubMedCrossRefGoogle Scholar
  68. 68.
    Buerger H, Gebhardt F, Schmidt H, et al (2000) Length and loss of heterozygosity of an intron 1 polymorphic sequence of egfr is related to cytogenetic alterations and epithelial growth factor receptor expression. Cancer Res 60:854-7.PubMedGoogle Scholar
  69. 69.
    Brandt B, Meyer-Staeckling S, Schmidt H, et al (2006) Mechanisms of egfr gene transcription modulation: relationship to cancer risk and therapy response. Clin Cancer Res 12:7252-60.PubMedCrossRefGoogle Scholar
  70. 70.
    Buerger H, Packeisen J, Boecker A, et al (2004) Allelic length of a CA dinucleotide repeat in the egfr gene correlates with the frequency of amplifications of this sequence – first results of an inter-ethnic breast cancer study. J Pathol 203:545-50.PubMedCrossRefGoogle Scholar
  71. 71.
    Tidow N, Boecker A, Schmidt H, et al (2003) Distinct amplification of an untranslated regulatory sequence in the egfr gene contributes to early steps in breast cancer development. Cancer Res 63:1172-8.PubMedGoogle Scholar
  72. 72.
    Wang B, Ren J, Ooi LL, et al (2005) Dinucleotide repeats negatively modulate the promoter activity of Cyr61 and is unstable in hepatocellular carcinoma patients. Oncogene 24:3999-4008.PubMedCrossRefGoogle Scholar
  73. 73.
    Tae HJ, Luo X and Kim KH (1994) Roles of CCAAT/enhancer-binding protein and its binding site on repression and derepression of acetyl-CoA carboxylase gene. J Biol Chem 269:10475-84.PubMedGoogle Scholar
  74. 74.
    Exner M, Schillinger M, Minar E, et al (2001) Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with restenosis after percutaneous transluminal angioplasty. J Endovasc Ther 8:433-40.PubMedCrossRefGoogle Scholar
  75. 75.
    Hill M, Pereira V, Chauveau C, et al (2005) Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. [Erratum appears in FASEB J. 2006 Jul;20(9):1573 Note: Ashgar, Kashif [corrected to Asghar, Kashif]]. FASEB J 19:1957-68.Google Scholar
  76. 76.
    Akai J, Kimura A and Hata RI (1999) Transcriptional regulation of the human type I collagen alpha2 (COL1A2) gene by the combination of two dinucleotide repeats. Gene 239:65-73.PubMedCrossRefGoogle Scholar
  77. 77.
    Huang TS, Lee CC, Chang AC, et al (2003) Shortening of microsatellite deoxy(CA) repeats involved in GL331-induced down-regulation of matrix metalloproteinase-9 gene expression. Biochem Biophy Res Co 300:901-7.CrossRefGoogle Scholar
  78. 78.
    Fiotti N, Altamura N, Fisicaro M, et al (2005) MMP-9 microsatellite polymorphism: association with the progression of intima-media thickening and constrictive remodeling of carotid atherosclerotic plaques. Atherosclerosis 182:287-92.PubMedCrossRefGoogle Scholar
  79. 79.
    Fiotti N, Altamura N, Fisicaro M, et al (2006) MMP-9 microsatellite polymorphism and susceptibility to carotid arteries atherosclerosis. Arterioscl Throm Vas 26:1330-6.CrossRefGoogle Scholar
  80. 80.
    Fiotti N, Pedio M, Battaglia Parodi M, et al (2005) MMP-9 microsatellite polymorphism and susceptibility to exudative form of age-related macular degeneration. Genet Med 7:272-7.PubMedCrossRefGoogle Scholar
  81. 81.
    Peters DG, Kassam A, St Jean PL, et al (1999) Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke 30:2612-6.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu H, Mulholland N, Fu H et al (2006) Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol Cell Biol 26:2550-9.PubMedCrossRefGoogle Scholar
  83. 83.
    McIntyre MH, Kantoff PW, Stampfer MJ, et al (2007) Prostate cancer risk and ESR1 TA, ESR2 CA repeat polymorphisms. Cancer Epidem Biomar 16:2233-6.CrossRefGoogle Scholar
  84. 84.
    Cai Q, Gao YT, Wen W, et al (2003) Association of breast cancer risk with a GT dinucleotide repeat polymorphism upstream of the estrogen receptor-alpha gene. Cancer Res 63:5727-30.PubMedGoogle Scholar
  85. 85.
    Borrmann L, Seebeck B, Rogalla P, et al (2003) Human HMGA2 promoter is coregulated by a polymorphic dinucleotide (TC)-repeat. Oncogene 22:756-60.PubMedCrossRefGoogle Scholar
  86. 86.
    Langelotz C, Schmid P, Jakob C, et al (2003) Expression of high-mobility-group-protein HMGI-C mRNA in the peripheral blood is an independent poor prognostic indicator for survival in metastatic breast cancer. Brit J Cancer 88:1406-10.PubMedCrossRefGoogle Scholar
  87. 87.
    Achary PM, Zhao H, Fan Z, et al (2003) A candidate metastasis-associated DNA marker for ductal mammary carcinoma. Breast Cancer Res 5:R52-8.PubMedCrossRefGoogle Scholar
  88. 88.
    Mukherjee B, Zhao H, Parashar B, et al (2003) Microsatellite dinucleotide (T-G) repeat: a candidate DNA marker for breast metastasis. Cancer Detect Prev 27:19-23.PubMedCrossRefGoogle Scholar
  89. 89.
    Reichardt JK, Makridakis N, Henderson BE, et al (1995) Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk. Cancer Res 55:3973-5.PubMedGoogle Scholar
  90. 90.
    Verreault H, Dufort I, Simard J, et al (1994) Dinucleotide repeat polymorphisms in the HSD3B2 gene. Hum Mol Genet 3:384.PubMedCrossRefGoogle Scholar
  91. 91.
    Nowacka-Zawisza M, Brys M, Romanowicz-Makowska H, et al (2008) Dinucleotide repeat polymorphisms of RAD51, BRCA1, BRCA2 gene regions in breast cancer. Pathol Int 58:275-81.PubMedCrossRefGoogle Scholar
  92. 92.
    Naylor LH and Clark EM (1990) d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res 18:1595-601.PubMedCrossRefGoogle Scholar
  93. 93.
    Nouhi Z, Chughtai N, Hartley S et al (2006) Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res 66:1824-32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Veterinary PathobiologyUniversity of MissouriColumbiaUSA

Personalised recommendations