Skip to main content

Transient Dynamics

  • Chapter
  • First Online:
Mathematics as a Laboratory Tool
  • 1807 Accesses

Abstract

Scientists, particularly those who investigate physiological and/or biomechanical systems, use inputs to explore the nature of biological dynamical systems (e.g., the black box shown in Figure 6.1). Since in the laboratory, we most often investigate dynamical systems that are stable (at least in some sense), we expect the observed responses to an input to contain two components:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader should note that we have written this equation to be dimensionally correct.

  2. 2.

    This is an example of a situation in which a system attains a steady state but is not at equilibrium.

  3. 3.

    An even gentler change can be obtained with a function that is not only continuous at the point where it begins to increase but differentiable as well. A parabolic forcing function would accomplish this.

  4. 4.

    Paul Adrien Maurice Dirac (1902–1984), English theoretical physicist.

  5. 5.

    George Green (1793–1841), British mathematical physicist.

  6. 6.

    E. Oran Brigham (b. 1919), American applied mathematician.

  7. 7.

    Several applets demonstrating this graphical approach for computing the convolution integral can be readily located on the Internet; see, for example, http://en.wikipedia.org/wiki/Convolution.

  8. 8.

    A geometric series is defined by \(S_{n} =\sum _{ i=0}^{n}m^{i}\), which converges for \(\vert m\vert < 1\) to \(1/(1 - m)\).

  9. 9.

    Wilfrid Rall (b. 1922), American neuroscientist.

  10. 10.

    Uwe an der Heiden (b. 1942), German mathematician and philosopher.

  11. 11.

    Leah Edelstein-Keshet (PhD 1982), Israeli–Canadian mathematical biologist.

References

  1. U. an der Heiden. Flexible modeling, mathematical analysis, and applications. In Neurodynamics: Proceedings of the 9th Summer Workshop on Mathematical Physics, pp. 49–95, Singapore, World Scientific, 1991.

    Google Scholar 

  2. C. Beaulieu, Z. Kisvarday, P. Somoygi, M. Cynader, and A. Cowey. Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (Area 17). Cerebral Cortex, 2:295–309, 1992.

    Article  Google Scholar 

  3. J. Bélair. Population models with state-dependent delays. In O. Arino, D. E. Axelrod, and M. Kimmel, editors, Lecture Notes in Pure and Applied Mathematics Vol. 131, pp. 165–176, New York, 1991. Marcel Dekker.

    Google Scholar 

  4. E. O. Brigham. The fast Fourier transform and its applications. Prentice Hall, Englewood, N. J., 1988.

    Google Scholar 

  5. M. A. Buice and J. D. Cowan. Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol., 99:53–86, 2009.

    Article  Google Scholar 

  6. J. L. Cabrera and J. G. Milton. Stick balancing, falls, and Dragon Kings. Eur. Phys. J. Spec. Topics, 205:231–241, 2012.

    Article  Google Scholar 

  7. H. Caswell and M. G. Neubert. Reactivity and transient dynamics of discrete-time ecological systems. J. Diff. Eq. Appl., 11:295–310, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Cruse and J. Storer. Open loop analysis of a feedback mechanism controlling the leg position in the stick insect Carausius morosus: Comparison between experiment and simulation. Biol. Cybern., 25:143–153, 1977.

    Article  Google Scholar 

  9. J. Day, J. E. Rubin, and C. C. Chow. Competition between transients in the rate of approach to a fixed point. SIAM J. Appl. Dyn. Syst, 8:1523–1563, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. C. Bastos de Figueiredo, L. Diambra, L. Glass, and C. P. Malta. Chaos in two-loop negative feedback system. Phys. Rev. E, 65:051905, 2002.

    Article  MathSciNet  Google Scholar 

  11. S. E. Duenwald, R. Vanderby, and R. S. Lakes. Constitutive equations for ligaments and other soft tissue: evaluation by experiment. Acta Mechanica, 205:23–33, 2009.

    Article  MATH  Google Scholar 

  12. L. Edelstein-Keshet. Mathematical models in biology. Random House, New York, 1988.

    MATH  Google Scholar 

  13. R. Fitzhugh. Impulses and physiological states in theoretical models of nerve membranes. Biophys. J., 1:445–466, 1961.

    Article  Google Scholar 

  14. R. Fitzhugh. Mathematical models for excitation and propagation in nerve. In Mathematical Engineering, pp. 1–85, New York, 1969. McGraw Hill.

    Google Scholar 

  15. W. J. Freeman. Neurodynamics: An exploration of mesoscopic brain dynamics. Springer-Verlag, New York, 2000.

    Google Scholar 

  16. W. J. Freeman and M. D. Holmes. Metastability, instability, and state transitions in neocortex. Neural Net., 18:497–504, 2005.

    Article  MATH  Google Scholar 

  17. R. Gambell. Birds and mammals—Antarctica. In Antarctica, pp. 223–241, New York, 1985. Pergamon Press.

    Google Scholar 

  18. L. Glass and C. P. Malta. Chaos in multi-looped negative feedback systems. J. theoret. Biol., 145:217–223, 1990.

    Article  MathSciNet  Google Scholar 

  19. A. L. Goldberg. Nonlinear dynamics, fractals and chaos: Application to cardiac electrophysiology. Ann. Biomed. Eng., 18:195–198, 1990.

    Article  Google Scholar 

  20. M. Goodfellow, K. Schindler, and G. Baier. Self-organized transients in a neural mass model of epileptogenic tissue dynamics. NeuroImage, 55:2644–2660, 2012.

    Article  Google Scholar 

  21. A. Hastings. Transients: The key to long-term ecological understanding? Trends Ecol. Evol., 19:39–45, 2004.

    Article  Google Scholar 

  22. M. Khosroyamiand and G. K. Hung. A dual-mode dynamic model of the human accommodative system. Bull. Math. Biol., 64:285–299, 2002.

    Article  Google Scholar 

  23. H. Levine. Pattern formation in the microbial world: Dictyostelium discoideum. In Epilepsy as a dynamic disease, J. Milton and P. Jung, editors, pp. 189–211. Springer, New York, 2003.

    Google Scholar 

  24. R. W. Meech and G. O. Mackie. Evolution of excitability in lower metazoans. In Invertebrate Neurobiology, pp. 581–616. New York, Cold Spring Harbor Laboratory Press, 2007.

    Google Scholar 

  25. J. Milton. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur. J. Neurosci., 35:2156–2163, 2012.

    Article  Google Scholar 

  26. J. G. Milton, A. R. Quan, and I. Osorio. Nocturnal frontal lobe epilepsy: Metastability in a dynamic disease? In I. Osorio, N. P. Zaveri, M. G. Frei, and S. Arthurs, editors, Epilepsy: Intersection of neuroscience, biology, mathematics, engineering and physics, pp. 445–450. New York, CRC Press, 2011.

    Google Scholar 

  27. M. K. Muezzinoglu, I. Tristan, R. Huerta, V. S. Afraimovich, and M. I. Rabinovich. Transients versus attractors in complex networks. Int. J. Bifurc. Chaos, 20:1653–1675, 2010.

    Article  MathSciNet  Google Scholar 

  28. J. D. Murray. Mathematical Biology. Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  29. I. Osorio, M. G. Frei, D. Sornette, J. Milton, and Y-V. C. Lai. Epileptic seizures: quakes of the brain? Phys. Rev. E, 82:021919, 2010.

    Google Scholar 

  30. A. Quan, I. Osorio, T. Ohira, and J. Milton. Vulnerability to paroxysmal oscillations in delayed neural networks: A basis for nocturnal frontal lobe epilepsy? Chaos, 21:047512, 2011.

    Article  Google Scholar 

  31. M. I. Rabinovich, R. Heurta, and G. Laurent. Transient dynamics for neural processing. Science, 321:48–50, 2008.

    Article  Google Scholar 

  32. M. I. Rabinovich, P. Varona, A. I. Selveston, and H. D. I. Abarbanel. Dynamical principles in neuroscience. Rev. Mod. Phys., 78:1213–1265, 2006.

    Article  Google Scholar 

  33. W. Rall. Distinguishing theoretical synaptic potentials computed for different soma–dendritic distributions of synaptic inputs. J. Neurophysiol., 30:1138–1168, 1967.

    Google Scholar 

  34. J. Rinzel and G. B. Ermentrout. Analysis of neural excitability and oscillations. In C. Koch and I. Segev, editors, Method in Neuronal Modeling: From Synapses to Networks, pp. 135–169. Cambridge, MIT Press, 1989.

    Google Scholar 

  35. A. Shumway-Cook and M. H. Woollacott. Motor control: theory and practical applications. Lippincott Williams & Wilkins, New York, 2001.

    Google Scholar 

  36. D. Sornette. Why stock markets crash: Critical events in complex financial systems. Princeton University Press, Princeton, NJ, 2003.

    Google Scholar 

  37. C. F. Stevens. How cortical interconnectedness varies with network size. Neural Comp., 1:473–479, 1965.

    Article  Google Scholar 

  38. F. C. Sun and L. Stark. Switching control of accommodation: experimental and simulation responses to ramp inputs. IEEE Trans. Biomed. Eng., 37:73–79, 1990.

    Article  Google Scholar 

  39. G. M. Tondel and T. R. Candy. Human infants’ accommodation responses to dynamic stimuli. Invest. Ophthalmol. Vis. Sci., 48:949–956, 2007.

    Article  Google Scholar 

  40. S. Visser, H. G. E. Meijer, H. C. Lee, W. van Drongelen, M. J. A. M. Putten, and S. A. van Gils. Comparing epileptoform behavior of mesoscale detailed models and population models of neocortex. J. Clin. Neurophysiol., 27:471–478, 2010.

    Article  Google Scholar 

  41. R. Warwick and P. L. Williams. Gray’s anatomy, 35th edition. Longman, Edinburgh, 1973.

    Google Scholar 

  42. J. P. Zbilut. Unstable singularities and randomness: Their importance in the complexity of physical, biomedical and social systems. Elsevier, New York, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Transient Dynamics. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_6

Download citation

Publish with us

Policies and ethics