Skip to main content

Simplicial Lipschitz Optimization Without Lipschitz Constant

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

Abstract

Global optimization algorithms discussed in the previous chapter, use the global estimate of the Lipschitz constant L given a priori and do not take into account the local information about the behavior of the objective function over every small subregion of \(\mathbb{D}\). It has been demonstrated in [74, 116, 126, 134] that estimation of the local Lipschitz constants during the search allows significant acceleration of the global search. Naturally, balancing between the local and global information must be performed in an appropriate way to increase the speed of optimization and avoid the missing of the global solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H., Haftka, R.T.: Parallel global aircraft configuration design space exploration. In: Tentner, A. (ed.) High Performance Computing Symposium 2000, pp. 54–66. Society for Computer Simulation International. San Diego, CA (2000)

    Google Scholar 

  2. Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using Direct to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002). doi:10.1023/A:1013729320435

    Article  MathSciNet  MATH  Google Scholar 

  3. Björkman, M., Holmström, K.: Global optimization using the Direct algorithm in Matlab. Advanced Modeling and Optimization, 1(2), 17–37 (1999)

    MATH  Google Scholar 

  4. Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001). doi:10.1023/A:1013123110266

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Global Optim. 21, 415–432 (2001). doi:10.1023/A:1012782825166

    Article  MathSciNet  MATH  Google Scholar 

  6. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Contr. Optim. 27(6), 1333–1360 (1989). doi:10.1137/0327068

    Article  MATH  Google Scholar 

  7. Dixon, L., Szegö, C.: The global optimisation problem: An introduction. In: Dixon, L., Szegö, G. (eds.) Towards Global Optimization, vol. 2, pp. 1–15. North-Holland, Amsterdam (1978)

    Google Scholar 

  8. Finkel, D.E.: Direct Optimization Algorithm User Guide. Center for Research in Scientific Computation, North Carolina State University, vol. 2 (2003)

    Google Scholar 

  9. Finkel, D.E.: Global Optimization with the Direct Algorithm. Ph.D. thesis, North Carolina State University (2005)

    Google Scholar 

  10. Finkel, D.E., Kelley, C.T.: Additive scaling and the Direct algorithm. J. Global Optim. 36, 597–608 (2006). doi:10.1007/s10898-006-9029-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Fletcher, R.: Practical Methods of Optimization, vol. 37. Wiley, New York (1987)

    MATH  Google Scholar 

  12. Gablonsky, J.M.: Modifications of the Direct Algorithm. Ph.D. thesis, North Carolina State University (2001)

    Google Scholar 

  13. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the Direct algorithm. J. Global Optim. 21, 27–37 (2001). doi:10.1023/A:1017930332101

    Article  MathSciNet  MATH  Google Scholar 

  14. Grbić, R., Nyarko, E.K., Scitovski, R.: A modification of the Direct method for Lipschitz global optimization for a symmetric function. J. Global Optim. 1–20 (2012). doi:10.1007/s10898-012-0020-3

    Google Scholar 

  15. He, J., Verstak, A., Watson, L.T., Sosonkina, M.: Design and implementation of a massively parallel version of Direct. Comput. Optim. Appl. 40(2), 217–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a Direct search algorithm. Comput. Optim. Appl. 23, 5–25 (2002). doi:10.1023/A:1019992822938

    Article  MathSciNet  MATH  Google Scholar 

  17. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and Its Application. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  18. Jones, D.R.: The Direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer, Dordrecht (1999)

    Google Scholar 

  19. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theor. Appl. 79(1), 157–181 (1993). doi:10.1007/BF00941892

    Article  MathSciNet  MATH  Google Scholar 

  20. Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3, 303–318 (2009). doi:10.1007/s11590-008-0110-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kvasov, D.E., Sergeyev, Y.D.: Univariate geometric Lipschitz global optimization algorithms. Numer. Algebra Contr. Optim. 2(1), 69–90 (2012). doi:10.3934/naco.2012.2.69

    Article  MathSciNet  MATH  Google Scholar 

  23. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Global Optim. 48, 113–128 (2010). doi:10.1007/s10898-009-9515-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Liuzzi, G., Lucidi, S., Piccialli, V.: A Direct-based approach for large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mockus, J.: On the Pareto optimality in the context of Lipschitzian optimization. Informatica 22(4), 521–536 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Global Optim. (2013, in press). doi:10.1007/s10898-013-0089-3

    Google Scholar 

  27. Sabo, K., Scitovski, R., Vazler, I.: One-dimensional center-based l 1-clustering method. Optim. Lett. 7, 5–22 (2013). doi:10.1007/s11590-011-0389-9

    Article  MathSciNet  MATH  Google Scholar 

  28. di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Optim. Theor. Appl. 151, 175–190 (2011). doi:10.1007/s10957-011-9856-9

    Article  MATH  Google Scholar 

  29. Sergeyev, Y.D.: An information global optimization algorithm with local tunning. SIAM J. Optim. 5(4), 858–870 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16, 910–937 (2006). doi:10.1137/040621132

    Article  MathSciNet  MATH  Google Scholar 

  31. Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, vol. 4, pp. 2812–2828. Wiley, New York (2011)

    Google Scholar 

  32. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. KAP, Dordrecht (2000)

    Book  Google Scholar 

  33. Vaz, A.I.F., Vicente, L.: Pswarm: A hybrid solver for linearly constrained global derivative-free optimization. Optim. Meth. Software 24(4–5), 669–685 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Watson, L.T., Baker, C.A.: A fully-distributed parallel global search algorithm. Eng. Comput. 18(1/2), 155–169 (2001)

    Article  MATH  Google Scholar 

  35. Yao, Y.: Dynamic tunneling algorithm for global optimization. IEEE Trans. Syst. Man Cybern. 19(5), 1222–1230 (1989)

    Article  Google Scholar 

  36. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012). doi:10.1016/j.amc.2011.07.051

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Remigijus Paulavičius, Julius Žilinskas

About this chapter

Cite this chapter

Paulavičius, R., Žilinskas, J. (2014). Simplicial Lipschitz Optimization Without Lipschitz Constant. In: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9093-7_3

Download citation

Publish with us

Policies and ethics