Lipschitz Optimization with Different Bounds over Simplices

  • Remigijus Paulavičius
  • Julius Žilinskas
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)


Many problems in engineering, physics, economics, and other fields may be formulated as optimization problems, where the optimal value of an objective function must be found [23, 55, 59, 110, 114, 134, 136].


Function Evaluation Test Problem Selection Strategy Feasible Region Lipschitz Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 2.
    Baravykaitė, M., Čiegis, R., Žilinskas, J.: Template realization of generalized branch and bound algorithm. Math. Model. Anal. 10(3), 217–236 (2005)MathSciNetzbMATHGoogle Scholar
  2. 3.
    Baritompa, W.: Customizing methods for global optimization — a geometric viewpoint. J. Global Optim. 3(2), 193–212 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 9.
    Breiman, L., Cutler, A.: A deterministic algorithm for global optimization. Math. Program. 58(1–3), 179–199 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 11.
    Butz, A.R.: Space filling curves and mathematical programming. Inform. Contr. 12, 319–330 (1968)MathSciNetCrossRefGoogle Scholar
  5. 13.
    Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel Programming in OpenMP. Morgan Kaufmann, Los Altos (2000)Google Scholar
  6. 14.
    Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming, vol. 10. MIT, Cambridge (2008)Google Scholar
  7. 16.
    Čiegis, R., Henty, D., Kågström, B., Žilinskas, J. (eds.): Parallel Scientific Computing and Optimization. Springer Optimization and Its Applications, vol. 27. Springer, New York (2009)Google Scholar
  8. 19.
    D’Apuzzo, M., Marino, M., Migdalas, A., Pardalos, P.M., Toraldo, G.: Parallel computing in global optimization. In: Kontoghiorghes, E.J. (ed.) Handbook of Parallel Computing and Statistics, pp. 225–258. Chapman & Hall, London (2006)Google Scholar
  9. 27.
    Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 28.
    Ferreira, A., Pardalos, P.M. (eds.): Solving Combinatorial Optimization Problems in Parallel: Methods and Techniques. Lecture Notes in Computer Science, vol. 1054. Springer, New York (1996)Google Scholar
  11. 34.
    Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization, vol. 1–6. Kluwer, Dordrecht (2001)CrossRefzbMATHGoogle Scholar
  12. 37.
    Galperin, E.A.: The cubic algorithm. J. Math. Anal. Appl. 112(2), 635–640 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 38.
    Galperin, E.A.: Precision, complexity, and computational schemes of the cubic algorithm. J. Optim. Theor. Appl. 57, 223–238 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 40.
    Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: survey and synthesis. Oper. Res. 42(6), 1042–1066 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 41.
    Gergel, V.P.: A global optimization algorithm for multivariate function with Lipschitzian first derivatives. J. Global Optim. 10(3), 257–281 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 44.
    Gorodetsky, S.: Paraboloid triangulation methods in solving multiextremal optimization problems with constraints for a class of functions with Lipschitz directional derivatives. Vestnik of Lobachevsky State University of Nizhni Novgorod 1, 144–155 (2012)Google Scholar
  17. 45.
    Gourdin, E., Hansen, P., Jaumard, B.: Global optimization of multivariate Lipschitz functions: Survey and computational comparison. Les Cahiers du GERAD (1994)Google Scholar
  18. 47.
    Gropp, W., Lusk, E.L., Skjellum, A.: Using MPI-: Portable Parallel Programming with the Message Passing Interface, vol. 1. MIT, Cambridge (1999)Google Scholar
  19. 49.
    Hansen, P., Jaumard, B.: Lipshitz optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, vol. 1, pp. 407–493. Kluwer, Dordrecht (1995)CrossRefGoogle Scholar
  20. 53.
    Horst, R.: A general class of branch-and-bound methods in global optimization with some new approaches for concave minimization. J. Optim. Theor. Appl. 51, 271–291 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 55.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and Its Application. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  22. 58.
    Horst, R., Tuy, H.: On the convergence of global methods in multiextremal optimization. J. Optim. Theor. Appl. 54, 253–271 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 59.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  24. 60.
    Jansson, C., Knuppel, O.: A global minimization method: The multi-dimensional case. Tech. rep., TU Hamburg-Harburg (1992)Google Scholar
  25. 61.
    Jaumard, B., Ribault, H., Herrmann, T.: An on-line cone intersection algorithm for global optimization of multivariate Lipschitz functions. Cahiers du GERAD 95(7) (1995)Google Scholar
  26. 64.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theor. Appl. 79(1), 157–181 (1993). doi:10.1007/BF00941892MathSciNetCrossRefzbMATHGoogle Scholar
  27. 67.
    Kolmogorov, A., Fomin, S.: Elements of Function Theory and Functional Analysis. Nauka, Moscow (1968)Google Scholar
  28. 70.
    Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal go methods. Numerische Mathematik 94(1), 93–106 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 71.
    Kvasov, D.E., Sergeyev, Y.D.: Multidimensional global optimization algorithm based on adaptive diagonal curves. Comput. Math. Math. Phys. 43(1), 40–56 (2003)MathSciNetGoogle Scholar
  30. 72.
    Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3, 303–318 (2009). doi:10.1007/s11590-008-0110-9MathSciNetCrossRefzbMATHGoogle Scholar
  31. 73.
    Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 79.
    Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 82.
    Madsen, K., Žilinskas, J.: Testing branch-and-bound methods for global optimization. Tech. Rep. IMM-REP-2000-05, Technical University of Denmark (2000)Google Scholar
  34. 84.
    Mayne, D.Q., Polak, E.: Outer approximation algorithm for nondifferentiable optimization problems. J. Optim. Theor. Appl. 42(1), 19–30 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 86.
    Meewella, C.C., Mayne, D.Q.: An algorithm for global optimization of Lipschitz continuous functions. J. Optim. Theor. Appl. 57(2), 307–323 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 87.
    Meewella, C.C., Mayne, D.Q.: An efficient domain partitioning algorithms for global optimization of rational and Lipschitz continuous functions. J. Optim. Theor. Appl. 61(2), 247–270 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 88.
    Migdalas, A., Pardalos, P.M., Storøy, S.: Parallel Computing in Optimization. Applied Optimization, vol. 7. Kluwer, Dordrecht (1997)Google Scholar
  38. 89.
    Mladineo, R.H.: An algorithm for finding the global maximum of a multimodal, multivariate function. Math. Program. 34(2), 188–200 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 90.
    Mladineo, R.H.: Convergence rates of a global optimization algorithm. Math. Program. 54(1–3), 223–232 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 94.
    Pardalos, P.M. (ed.): Parallel Processing of Discrete Problems. IMA Volumes in Mathematics and its Applications, vol. 106. Springer, New York (1999)Google Scholar
  41. 96.
    Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization. Tech. Econ. Dev. Econ. 12(4), 301–306 (2006)Google Scholar
  42. 97.
    Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inform. Tech. Contr. 36(4), 383–387 (2007)Google Scholar
  43. 98.
    Paulavičius, R., Žilinskas, J.: Improved Lipschitz bounds with the first norm for function values over multidimensional simplex. Math. Model. Anal. 13(4), 553–563 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 99.
    Paulavičius, R., Žilinskas, J.: Global optimization using the branch-and-bound algorithm with a combination of Lipschitz bounds over simplices. Tech. Econ. Dev. Econ. 15(2), 310–325 (2009)CrossRefGoogle Scholar
  45. 100.
    Paulavičius, R., Žilinskas, J.: Influence of Lipschitz bounds on the speed of global optimization. Tech. Econ. Dev. Econ. 18(1), 54–66 (2012). doi:10.3846/20294913.2012.661170CrossRefGoogle Scholar
  46. 102.
    Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010). doi:10.1007/s11590-009-0156-3MathSciNetCrossRefzbMATHGoogle Scholar
  47. 103.
    Paulavičius, R., Žilinskas, J., Grothey, A.: Parallel branch and bound for global optimization with combination of Lipschitz bounds. Optim. Meth. Software 26(3), 487–498 (2011)CrossRefGoogle Scholar
  48. 104.
    Pedoe, D.: Circles: A Mathematical View. Math. Assoc. Amer., Washington, DC (1995)zbMATHGoogle Scholar
  49. 106.
    Pinter, J.: Extended univariate algorithms for n-dimensional global optimization. Computing 36(1), 91–103 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 107.
    Pinter, J.: Globally convergent methods for n-dimensional multiextremal optimization. Optimization 17, 187–202 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 108.
    Pinter, J.: Branch-and-bound algorithms for solving global optimization problems with Lipschitzian structure. Optimization 19(1), 101–110 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 109.
    Pinter, J.: Continuous global optimization software: A brief review. Optika 52, 1–8 (1996)Google Scholar
  53. 110.
    Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Nonconvex Optimization and Its Application. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  54. 111.
    Piyavskii, S.A.: An algorithm for finding the absolute minimum of a function. Theor. Optim. Solut. 2, 13–24 (1967). In RussianGoogle Scholar
  55. 112.
    Piyavskii, S.A.: An algorithm for finding the absolute extremum of a function. Zh. Vychisl. Mat. mat. Fiz 12(4), 888–896 (1972)Google Scholar
  56. 116.
    Sergeyev, Y.D.: An information global optimization algorithm with local tunning. SIAM J. Optim. 5(4), 858–870 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 117.
    Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35(5), 553–562 (1995)MathSciNetGoogle Scholar
  58. 118.
    Sergeyev, Y.D.: A method using local tuning for minimizing functions with Lipschitz derivatives. In: Developments in Global Optimization, pp. 199–216. Springer, New York (1997)Google Scholar
  59. 119.
    Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81(1), 127–146 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 120.
    Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput. Math. Math. Phys. 39(5), 711–720 (1999)MathSciNetzbMATHGoogle Scholar
  61. 121.
    Sergeyev, Y.D.: Univariate global optimization with multiextremal non-differentiable constraints without penalty functions. Comput. Optim. Appl. 34(2), 229–248 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 122.
    Sergeyev, Y.D., Grishagin, V.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theor. Appl. 80(3), 513–536 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 123.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16, 910–937 (2006). doi:10.1137/040621132MathSciNetCrossRefzbMATHGoogle Scholar
  64. 124.
    Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008). In RussianGoogle Scholar
  65. 125.
    Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization and estimates of the Lipschitz constant. In: Chaoqun, M., Lean, Y., Dabin, Z., Zhongbao, Z. (eds.) Global Optimization: Theory, Methods and Applications, I, pp. 518–521. Global Link, Hong Kong (2009)Google Scholar
  66. 127.
    Sergeyev, Y.D., Kvasov, D.E., Khalaf, F.M.: A one-dimensional local tuning algorithm for solving go problems with partially defined constraints. Optim. Lett. 1(1), 85–99 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 128.
    Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Program. 96(3), 489–512 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 129.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting space-filling curves. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  69. 130.
    Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9, 379–388 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 131.
    Snir, M.: MPI the Complete Reference: The MPI Core, vol. 1. MIT, Cambridge (1998)Google Scholar
  71. 132.
    Strongin, R.G.: Algorithms for multi-extremal mathematical programming problems employing the set of joint space-filling curves. J. Global Optim. 2, 357–378 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 133.
    Strongin, R.G., Sergeyev, Y.D.: Global multidimensional optimization on parallel computer. Parallel Comput. 18(11), 1259–1273 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 134.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. KAP, Dordrecht (2000)CrossRefGoogle Scholar
  74. 141.
    Wood, G.R.: Multidimensional bisection applied to global optimisation. Comp. Math. Appl. 21(6–7), 161–172 (1991)CrossRefzbMATHGoogle Scholar
  75. 142.
    Wood, G.R.: The bisection method in higher dimensions. Math. Program. 55, 319–337 (1992)CrossRefzbMATHGoogle Scholar
  76. 144.
    Zhang, B.P., Wood, G., Baritompa, W.: Multidimensional bisection: The performance and the context. J. Global Optim. 3(3), 337–358 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Remigijus Paulavičius, Julius Žilinskas 2014

Authors and Affiliations

  • Remigijus Paulavičius
    • 1
  • Julius Žilinskas
    • 1
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations