Advertisement

Simplicial Partitions in Global Optimization

  • Remigijus Paulavičius
  • Julius Žilinskas
Chapter
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

Abstract

Many problems in engineering, physics, economics, and other fields may be formulated as optimization problems, where the optimal value of an objective function must be found [23, 55, 59, 110, 114, 134, 136].

Keywords

Objective Function Search Space Global Optimization Feasible Region Delaunay Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 8.
    Bomze, I.M., Eichfelder, G.: Copositivity detection by difference-of-convex decomposition and ω-subdivision. Math. Program. 138(1–2), 365–400 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 10.
    Bundfuss, S., Dür, M.: Algorithmic copositivity detection by simplicial partition. Lin. Algebra Appl. 428(7), 1511–1523 (2008)CrossRefzbMATHGoogle Scholar
  3. 18.
    Csendes, T.: Generalized subinterval selection criteria for interval global optimization. Numer. Algorithms 37(1–4), 93–100 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 20.
    Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7(793–800), 1–2 (1934)Google Scholar
  5. 22.
    Dickinson, P.J.: On the exhaustivity of simplicial partitioning. J. Global Optim. 1–15 (2012). doi: 10.1007/s10898-013-0040-7Google Scholar
  6. 23.
    Dixon, L., Szegö, C.: The global optimisation problem: An introduction. In: Dixon, L., Szegö, G. (eds.) Towards Global Optimization, vol. 2, pp. 1–15. North-Holland, Amsterdam (1978)Google Scholar
  7. 25.
    Dür, M., Stix, V.: Probabilistic subproblem selection in branch-and-bound algorithms. J. Comput. Appl. Math. 182(1), 67–80 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 26.
    Edelsbrunner, H., Grayson, D.R.: Edgewise subdivision of a simplex. Discrete Comput. Geom. 24(4), 707–719 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 33.
    Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Nonconvex Optimization and its Applications, vol. 37. Kluwer, Dordrecht (2000)Google Scholar
  10. 43.
    Gonçalves, E.N., Palhares, R.M., Takahashi, R.H.C., Mesquita, R.C.: Algorithm 860: SimpleS – an extension of Freudenthal’s simplex subdivision. ACM Trans. Math. Software 32(4), 609–621 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 44.
    Gorodetsky, S.: Paraboloid triangulation methods in solving multiextremal optimization problems with constraints for a class of functions with Lipschitz directional derivatives. Vestnik of Lobachevsky State University of Nizhni Novgorod 1, 144–155 (2012)Google Scholar
  12. 48.
    Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2 edn. Dekker, New York (2004)zbMATHGoogle Scholar
  13. 52.
    Horst, R.: An algorithm for nonconvex programming problems. Math. Program. 10(1), 312–321 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 54.
    Horst, R.: On generalized bisection of n-simplices. Math. Comput. Am. Math. Soc. 66(218), 691–698 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 55.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and Its Application. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  16. 56.
    Horst, R., Thoai, N.: Modification, implementation and comparison of three algorithms for globally solving linearly constrained concave minimization problems. Computing 42(2–3), 271–289 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 57.
    Horst, R., Thoai, N., De Vries, J.: On geometry and convergence of a class of simplicial covers. Optimization 25(1), 53–64 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 59.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  19. 65.
    Kearfott, B.: A proof of convergence and an error bound for the method of bisection in \({\mathbb{R}}^{n}\). Math. Comput. 32(144), 1147–1153 (1978)MathSciNetzbMATHGoogle Scholar
  20. 68.
    Kreinovich, V., Csendes, T.: Theoretical justification of a heuristic subbox selection criterion for interval global optimization. Centr. Eur. J. Oper. Res. 9(3), 255–265 (2001)MathSciNetzbMATHGoogle Scholar
  21. 77.
    Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Oper. Res. 14(4), 699–719 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 83.
    Madsen, K., Žilinskas, J.: Parallel branch-and bound attraction based methods for global optimization. In: Dzemyda, G., Šaltenis, V., Žilinskas, A. (eds.) Stochastic and Global Optimization. Nonconvex Optimization and its Applications, pp. 175–187. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  23. 85.
    McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(02), 179–184 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 92.
    Moore, R.E.: Methods and Applications of Interval Analysis, vol. 2. SIAM, Philadelphia (1979)CrossRefzbMATHGoogle Scholar
  25. 105.
    Petkovic, M.S., Petkovic, L.D.: Complex Interval Arithmetic and Its Applications, vol. 105. Wiley, New York (1999)Google Scholar
  26. 110.
    Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Nonconvex Optimization and Its Application. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  27. 114.
    Scholz, D.: Deterministic Global Optimization: Geometric Branch-and-bound Methods and their Applications. Springer Optimization and Its Applications, vol. 63. Springer, New York (2012)Google Scholar
  28. 134.
    Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. KAP, Dordrecht (2000)CrossRefGoogle Scholar
  29. 135.
    Todt, M.J.: The computation of Fixed Points and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 24. Springer-Verlag, Berlin Heidelberg (1976)Google Scholar
  30. 136.
    Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989)Google Scholar
  31. 137.
    Tuy, H.: Effect of the subdivision strategy on convergence and efficiency of some global optimization algorithms. J. Global Optim. 1(1), 23–36 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 138.
    Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and dc optimization problems. Math. Program. 41(1–3), 161–183 (1988)MathSciNetzbMATHGoogle Scholar
  33. 146.
    Žilinskas, A., Žilinskas, J.: Global optimization based on a statistical model and simplicial partitioning. Comp. Math. Appl. 44(7), 957–967 (2002). doi:10.1016/S0898-1221(02) 00206-7CrossRefzbMATHGoogle Scholar
  34. 147.
    Žilinskas, A., Žilinskas, J.: Branch and bound algorithm for multidimensional scaling with city-block metric. J. Global Optim. 43(2–3), 357–372 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 149.
    Žilinskas, A., Žilinskas, J.: P-algorithm based on a simplicial statistical model of multimodal functions. TOP 18, 396–412 (2010). doi:10.1007/s11750-010-0153-9MathSciNetCrossRefzbMATHGoogle Scholar
  36. 151.
    Žilinskas, J.: Optimization of Lipschitzian functions by simplex-based branch and bound. Inform. Tech. Contr. 14(1), 45–50 (2000)Google Scholar
  37. 152.
    Žilinskas, J.: Black box global optimization inspired by interval methods. Inform. Tech. Contr. 21(4), 53–60 (2001)Google Scholar
  38. 154.
    Žilinskas, J.: Reducing of search space of multidimensional scaling problems with data exposing symmetries. Inform. Tech. Contr. 36(4), 377–382 (2007)Google Scholar
  39. 155.
    Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi:10.3846/1392-6292.2008.13.145-159MathSciNetCrossRefzbMATHGoogle Scholar
  40. 156.
    Žilinskas, J.: Copositive programming by simplicial partition. Informatica 22(4), 601–614 (2011)MathSciNetzbMATHGoogle Scholar
  41. 158.
    Žilinskas, J., Dür, M.: Depth-first simplicial partition for copositivity detection, with an application to MaxClique. Optim. Meth. Software 26(3), 499–510 (2011). doi:10.1080/10556788.2010.544310CrossRefzbMATHGoogle Scholar

Copyright information

© Remigijus Paulavičius, Julius Žilinskas 2014

Authors and Affiliations

  • Remigijus Paulavičius
    • 1
  • Julius Žilinskas
    • 1
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations