Advertisement

Meteorites, Asteroids and the Age and Origin of the Solar System

  • Eugene F. Milone
  • William J. F. Wilson
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

In the previous chapter, we discussed sporadic meteors and meteor showers and indicated that some of the former and most of the latter likely originate from comets. Here we discuss the source of the other meteors, especially those that survive their fiery passage through the atmosphere and impact the Earth. These meteorites have become a primary source of knowledge about the age and origin of the solar system. Another important source is the increasing number of small bodies being detected in both the inner and the outer solar system, so we will also describe what has been learned about these objects in recent years. Finally we consider the birth of the solar system in the context of what we know about proto-stellar disks.

Keywords

Solar System Parent Body Solar Nebula Carbonaceous Chondrite Iron Meteorite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J.J., Petit, J.-M., and Gwyn, S.: A Uranian Trojan and the frequency of temporary giant-planet co-orbitals. Science 341 (6149) 994−997 (2013)ADSCrossRefGoogle Scholar
  2. Alvarez, L.: Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980)ADSCrossRefGoogle Scholar
  3. Asmar, S.W., Konopliv, A.S., Park, R.S., Raymond, C.A., Bills, B., Gaskell, R.W., Russell, C. T., Smith, D.E., Toplis, M., Zuber, M.T.: The gravity field of Vesta from Dawn. European Planetary Science Conference, Abstract EPSC 2012-814-1 (2012)Google Scholar
  4. Baer, J., Chesley, S.R., Matson, R.D.: Astrometric masses of 26 asteroids and observations on asteroid porosity. Astronom. J 141 (2011). doi:  10.1088/0004-6256/141/5/143 (12 pages)
  5. Beck, A.W., McSween Jr., H.Y.: Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteor. Planet. Sci. 45(Nr 5), 850–872 (2010)ADSCrossRefGoogle Scholar
  6. Bendjoya, P., Zappalà, V.: Asteroid family identification. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 613–618. University of Arizona Press, Arizona (2002)Google Scholar
  7. Bendjoya, P., Slezak, E., and Foreschle, C.: The wavelet transform: a new tool for asteroid family determination. Astron. & Astrophys 251, 312–330 (1991)ADSzbMATHGoogle Scholar
  8. Bertotti, B., Farinella, P., Vokrouhlicky, D.: Physics of the Solar System. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  9. Binzel, R.P., Bus, S.J., Burbine, T.H.: The orbital distribution of Vesta-like asteroids. 30th Lunar and Planetary Science Conference, Houston, Texas, Abstract 1216 (1999)Google Scholar
  10. Binzel, R.P., Bus, S.J., Burbine, T.H.: Relating S-asteroids and ordinary chondrite meteorites: the new big picture. BAAS 30, 1041 (1998)ADSGoogle Scholar
  11. Bogard, D.D., Garrison, D.H.: Relative abundances of Ar, Kr, and Xe in the Martian atmosphere as measured by Martian meteorites. Geochim. Cosmochim. Acta 62, 1829–1835 (1998)ADSCrossRefGoogle Scholar
  12. Bogard, D.D., Garrison, D.H.: Argon 39-Argon 40 ‘ages’ and trapped Argon in Martian Shergottites, Chassigny, and Allen Hills 84001. Meteorit. Planet. Sci. 34, 451–473 (1999)ADSCrossRefGoogle Scholar
  13. Borg, L.E., Edmunds, J.E., Asmerom, Y.: Constraints on the U–Pb isotopic systematics of Mars inferred from a combined U–Pb, Rb–Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochim. Cosmochim. Acta 69, 5819–5830 (2005)ADSCrossRefGoogle Scholar
  14. Boss, A.P.: Collapse and fragmentation of molecular cloud. II. Collapse induced by stellar shock waves. Astrophys. J. 439, 224–236 (1995)ADSCrossRefGoogle Scholar
  15. Boss, A.P.: From molecular clouds to circumstellar disks. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 67–80. University of Arizona Press, Tucson, AZ (2004)Google Scholar
  16. Brouwer, D.: Secular variations of the orbital elements of the minor planets. Astronom. J. 56, 9–32 (1951)ADSCrossRefGoogle Scholar
  17. Brown, M.E., van Dam, M.A., Bouchez, A.H., Le Mignant, D., Campbell, R.D., Chin, J.C.Y., Conrad, A., Hartman, S.K., Johansson, E.M., Lafon, R.E., Rabinowitz, D.L., Stomski Jr., P.J., Summer, D.M., Trujillo, C.A., Wizinowich, P.L.: Satellites of the largest Kuiper Belt objects. Astrophys. J. 639, L43–L46 (2006)ADSCrossRefGoogle Scholar
  18. Brož, M., Vokrouhlický, D.: Asteroid families in the first-order resonances with Jupiter. Month. Notice. R. Astronom. Soc. 390, 715–732 (2008)ADSCrossRefGoogle Scholar
  19. Buratti, B.J., Dalba, P.A., Hicks, M.D., Reddy, V., Sykes, M.V., McCord, T.B., O’Brien, D.P., Pieters, C.M., Prettyman, T.H., McFadden, L.A., Nathues, A., Le Corre, L., Marchi, S., Raymond, C., Russell, C.T.: Vesta, Vestoids, and HEDs: Dawn, ground-based, and RELAB observations. 44th Lunar and Planetary Science Conference, Abstract 1845 (2013)Google Scholar
  20. Burbine, T.H., McCoy, T.J., Meibom, A., Gladman, B., Keil, K.: Meteoritic parent bodies: their number and identification. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 653–667. University of Arizona Press, Tucson, AZ (2002)Google Scholar
  21. Bus, S.J., Binzel, R.P.: Phase II of the small main-belt asteroid spectroscopy survey: a feature-based taxonomy. Icarus 158, 146–177 (2002)ADSCrossRefGoogle Scholar
  22. Cameron, A.G.W., Truran, J.W.: The supernova trigger for formation of the solar system. Icarus 30, 447–461 (1977)ADSCrossRefGoogle Scholar
  23. Chapman, C.R.: Asteroids. In: Beatty J.K., Chaikin A. (eds) The New Solar System, 3rd ed, pp. 231–240. Sky, Cambridge, MA; Press Syndicate of University of Cambridge, Cambridge, UK (1990)Google Scholar
  24. Chapman, C.R., Morrison, D., Zellner, B.: Surface properties of asteroids: a synthesis of polarimetry, radiometry, and spectrophotometry. Icarus 25, 104–130 (1975)ADSCrossRefGoogle Scholar
  25. Clayton, R.N.: Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)ADSCrossRefMathSciNetGoogle Scholar
  26. Clayton, R.N., Mayeda, T.K.: The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161 (1984)ADSCrossRefGoogle Scholar
  27. Clayton, R.N., Mayeda, T.K.: Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60(11), 1999–2017 (1996)ADSCrossRefGoogle Scholar
  28. Clayton, R.N., Mayeda, T.K., Goswami, J.N., Olsen, E.J.: Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991)ADSCrossRefGoogle Scholar
  29. De Sanctis, M.C., Ammannito, E., Capria, M.T., Tosi, F., Capaccioni, F., Zambon, F., Carraro, F., Fonte, S., Frigeri, A., Jaumann, R., Magni, G., Marchi, S., McCord, T.B., McFadden, L.A., McSween, H.Y., Mittlefehldt, D.W., Nathues, A., Palomba, E., Pieters, C.M., Raymond, C.A., Russell, C.T., Toplis, M.J., Turrini, D.: Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697–700 (2012)ADSCrossRefGoogle Scholar
  30. Delisle, J.-B., Laskar, J.: Chaotic diffusion of the Vesta family induced by close encounters with massive asteroids. Astronom. Astrophys. 540, A118 (2012). doi: 10.1051/0004-6361/201118339 (8 pages)ADSCrossRefGoogle Scholar
  31. Denevi, B.W., Blewett, D.T., Buczkowski, D.L., Capaccioni, F., Capria, M.T., De Sanctis, M.C., Garry, W.B., Gaskell, R.W., Le Corre, L., Li, J.-Y., Marchi, S., McCoy, T.J., Nathues, A., O’Brien, D.P., Petro, N.E., Pieters, C.M., Preusker, F., Raymond, C.A., Reddy, V., Russell, C.T., Schenk, P., Scully, J.E.C., Sunshine, J.M., Tosi, F., Williams, D.A., Wyrick, D.: Pitted terrain on Vesta and implications for the presence of volatiles. Science 338, 246–249 (2012)ADSCrossRefGoogle Scholar
  32. Dones, L., Weissman, P.R., Levison, H.F., Duncan, M.J.: Oort cloud formation and dynamics. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 153–174. University of Arizona Press, Tucson, AZ (2004)Google Scholar
  33. Drake, M.J., Swindle, T.D., Owen, T., Musselwhite, D.S.: Fractionated Martian atmosphere in the nakhlites? Meteoritics 29, 854–859 (1994)ADSCrossRefGoogle Scholar
  34. Dunham, D.W., Bixby Dunham, J., et al.: The size and shape of (2) Pallas from the 1983 occultation of 1 Vulpeculae. Astronom. J. 99, 1636–1662 (1990)ADSCrossRefGoogle Scholar
  35. Eugster, O., Weigel, A., Polnau, E.: Ejection times of Martian meteorites. Geochim. Cosmochim. Acta 61, 2749–2757 (1997)ADSCrossRefGoogle Scholar
  36. Eugster, O., Herzog, G.F., Marti, K., Caffee, M.W.: Irradiation records, cosmic-ray exposure ages, and transfer times of meteorites. In: Lauretta, D.S., McSween Jr., H.Y. (eds.) Meteorites and the Early Solar System II, pp. 829–851. University of Arizona Press, Tucson, AZ (2006)Google Scholar
  37. Fessenkov, V.G.: Sikhoté-Aline meteorite. In: Kaiser, T.R. (ed.) Meteors, pp. 179–183. Pergamon, New York (1955)Google Scholar
  38. Froeschle, C., Hahn, G., Gonczi, R., Morbidelli, A., Farinella, P.: Secular resonances and the dynamics of Mars-crossing and near-Earth asteroids. Icarus 117, 45–61 (1995)ADSCrossRefGoogle Scholar
  39. Fu, R.R., Weiss, B.P., Shuster, D.L., Gattacceca, J., Grove, T.L., Suavet, C., Lima, E.A., Li, L., Kuan, A.T.: An ancient core dynamo in asteroid Vesta. Science 338, 238–241 (2012)ADSCrossRefGoogle Scholar
  40. Gauss, K.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientum (Hamburg: Perthes und Besser) tr., Davis, C. H. 1857. Theory of the motion of the heavenly bodies moving about the sun in conic sections (Boston: Little, Brown & Company). Original reprinting, 1981. In Werke, Bd. 7. 1–280. Georg Olms Verlag, Hildesheim/New York (1809)Google Scholar
  41. Gladman, B., Coffey, J.: Mercurian impact ejecta: meteorites and mantle. Meteorit. Planet. Sci. 44, 285–291 (2009)ADSCrossRefGoogle Scholar
  42. Gounelle, M., Meibom, A.: The origin of short-lived radionuclides and the astrophysical environment of solar system formation. Astrophys. J. 680, 781–792 (2008)ADSCrossRefGoogle Scholar
  43. Grady, M.M.: Catalogue of Meteorites, 5th edn. The Natural History Museum, London (2000). Updates available at: http://www.nhm.ac.uk/research-curation/research/projects/metcat/ Google Scholar
  44. Henney, W.J., O’Dell, C.R.: A Keck high-resolution spectroscopic study of the Orion Nebula proplyds. Astronom. J. 118, 2350–2368 (1999)ADSCrossRefGoogle Scholar
  45. Hewins, R.H.: Chondrules. Annu. Rev. Earth Planet. Sci. 25, 61–83 (1997)ADSCrossRefGoogle Scholar
  46. Hirayama, K.: Groups of asteroids probably of common origin. Proc. Phys. Math. Soc. Japan Ser. 2(9), 354–361 (1918a)Google Scholar
  47. Hirayama, K.: Groups of asteroids probably of common origin. Astronom. J. 31, 185–188 (1918b)ADSCrossRefGoogle Scholar
  48. Hodge, P.: Meteorite Craters and Impact Structures of the Earth. The University Press, Cambridge (1994)Google Scholar
  49. Hutchison, R.: Meteorites. University Press, Cambridge, UK (2004)Google Scholar
  50. Irving, A.J., Kuehner, S.M., Bunch, T.E., Ziegler, K., Chen, G., Herd, C.D.K., Conrey, R.M., Ralew, S.: Ungrouped mafic achondrite Northwest Africa 7325: a reduced, iron-poor cumulate Olivine Gabbro from a differentiated planetary body. 44th Lunar and Planetary Science Conference, The Woodlands, Texas. Abstract 2164 (2013)Google Scholar
  51. Jaumann, R., Williams, D.A., Buczkowski, D.L., Yingst, R.A., Preusker, F., Hiesinger, H., Schmedemann, N., Kneissl, T., Vincent, J.B., Blewett, D.T., Buratti, B.J., Carsenty, U., Denevi, B.W., De Sanctis, M.C., Garry, W.B., Keller, H.U., Kersten, E., Krohn, K., Li, J.-Y., Marchi, S., Matz, K.D., McCord, T.B., McSween, H.Y., Mest, S.C., Mittlefehldt, D.W., Mottola, S., Nathues, A., Neukum, G., O’Brien, D.P., Pieters, C.M., Prettyman, T.H., Raymond, C.A., Roatsch, T., Russell, C.T., Schenk, P., Schmidt, B.E., Scholten, F., Stephan, K., Sykes, M.V., Tricarico, P., Wagner, R., Zuber, M.T., Sierks, H.: Vesta’s shape and morphology. Science 336, 687–690 (2012)ADSCrossRefGoogle Scholar
  52. Jewitt, D., Luu, J.: Physical nature of the Kuiper belt. In: Mannings, V., Boss, A.P., Russell, S.S. (eds.) Protostars and Planets IV, pp. 1201–1229. University of Arizona Press, Tucson, AZ (2000)Google Scholar
  53. Jewitt, D., Agarwal, J., Weaver, H., Mutchler, M., Larson, S.: The extraordinary multi-tailed Main-Belt Comet P/2013 P5. Astrophys. J. Letters 778: L21 (4pp) (2013)Google Scholar
  54. Joy, K.H., Crawford, I.A., Russell, S.S., Swinyard, B., Kellett, B., Grande, M.: Lunar Regolith Breccias MET01210, PCA02007 and DAG400: their importance in understanding the lunar surface and implications for the scientific analysis of D-CIXS data. Lunar Planet. Sci. 37(1274 Suppl), 5221 (2006)Google Scholar
  55. Karlsson, H.R., Clayton, R.N., Gibson Jr., E.K., Mayeda, T.K.: Water in SNC meteorites: evidence for a Martian hydrosphere. Science 255, 1409–1411 (1992)ADSCrossRefGoogle Scholar
  56. Karttunen, H., Kroger, P., Oja, H., Poutanen, M., Donner, K.J. (eds.): Fundamental Astronomy. Springer, Berlin (2003)Google Scholar
  57. Kelley, D.H., Milone, E.F.: Exploring Ancient Skies, 2nd edn. Springer, New York (2011)CrossRefGoogle Scholar
  58. Kirsten, T.: Time and the solar system. In: Dermott, S.F. (ed.) Origin of the Solar System, pp. 267–346. Wiley, New York (1978)Google Scholar
  59. Lindblad, B.A., Southworth, R.B.: A study of asteroid families and streams by computer techniques. In: Gehrels, T. (ed.) Physical Studies of Minor Planets, pp. 338–352. NASA SP 267, Washington, DC (1971)Google Scholar
  60. Liu, Y., Nyquist, L., Wiesmann, H., Shih, C., Schwandt, C., Takeda, H.: Internal Rb-Sr age and initial 87Sr/86Sr of a silicate inclusion from the Campo Del Cielo iron meteorite. Lunar Planet. Sci. XXXIV (2003)Google Scholar
  61. Marti, K., Kim, J.S., Thakur, A.N., McCoy, T.J., Keil, K.: Signatures of the Martian atmosphere in glass of the Zagami meteorite. Science 267, 1981–1984 (1995)ADSCrossRefGoogle Scholar
  62. Matsumura, S., Pudritz, R.E., Thommes, E.W.: Saving planetary systems: dead zones and planetary migration. Astrophys. J. 660, 1609–1623 (2007)ADSCrossRefGoogle Scholar
  63. Meaburn, J.: An extended high-speed flow from a compact, ionized knot in the Orion Nebula (M42). Month. Notice. R. Astronom. Soc. 233, 791–800 (1988)ADSGoogle Scholar
  64. Milone, E.F., Wilson, W.J.F.: Solar System Astrophysics: Background Science and the Inner Solar System, 2nd edn. Springer, New York (2014)CrossRefGoogle Scholar
  65. Morbidelli, A., Brown, M.E.: The Kuiper belt and the primordial evolution of the solar system. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II, pp. 175–191. University of Arizona Press, Tucson, AZ (2004)Google Scholar
  66. Morbidelli, A., Bottke Jr., W.F., Froeschlé, C., Michel, P.: Origin and evolution of near-Earth objects. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 409–422. University of Arizona Press, Tucson, AZ (2002)Google Scholar
  67. Moser, D.E., Chamberlain, K.R., Tait, K.T., Shmitt, A.K., Darling, J.R., Barker, J.R., Hyde, B.C.: Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature 499 doi:10.1038/nature12341 (2013)Google Scholar
  68. O’Dell, C.R., Wen, Z.: Postrefurbishment mission Hubble Space Telescope images of the Orion Nebula: proplyds, Herbig-Haro objects, and measurement of a circumstellar disk. Astrophys. J. 436, 194–202 (1994)ADSCrossRefGoogle Scholar
  69. Pinson Jr., W.H., Schnetzler, C.C., Beiser, E., Fairbairn, H.W., Hurley, P.M.: Rb-Sr age of stony meteorites. Geochim. Cosmochim. Acta 29, 455–466 (1965)ADSCrossRefGoogle Scholar
  70. Righter, K., Gruener, J.: The Lunar Meteorite Compendium (2012). http://www-curator.jsc.nasa.gov/antmet/lmc/index.cfm
  71. Russell, C.T., Raymond, C.A., Coradini, A., McSween, H.Y., Zuber, M.T., Nathues, A., De Sanctis, M.C., Jaumann, R., Konopliv, A.S., Preusker, F., Asmar, S.W., Park, R.S., Gaskell, R., Keller, H.U., Mottola, S., Roatsch, T., Scully, J.E.C., Smith, D.E., Tricarico, P., Toplis, M.J., Christensen, U.R., Feldman, W.C., Lawrence, D.J., McCoy, T.J., Prettyman, T.H., Reedy, R.C., Sykes, M.E., Titus, T.N.: Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012)ADSCrossRefGoogle Scholar
  72. Sears, D.W.G., Dodd, R.T.: Meteorites and the Early Solar System. University of Arizona Press, Tucson, AZ (1988)Google Scholar
  73. Shimoda, G., Nakamura, N., Kimura, M., Kani, T., Nohda, S., Yamamoto, K.: Evidence from the Rb-Sr system for 4.4 Ga alteration of chondrules in the Allende (CV3) parent body. Meteorit. Planet. Sci. 40(Nr 7), 1059–1072 (2005)ADSCrossRefGoogle Scholar
  74. Smith, B.A., Terrile, R.J.: A circumstellar disk around Beta Pictoris. Science 226, 1421–1424 (1984)ADSCrossRefGoogle Scholar
  75. Tatsumoto, M., Unruh, D.M., Desborough, G.A.: U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil. Geochim. Cosmochim. Acta 40, 617–634 (1976)Google Scholar
  76. Taylor, S.R.: Solar System Evolution: A New Perspective. University Press, Cambridge (1992)Google Scholar
  77. Taylor, A.D., Baggaley, W.J., Steel, D.I.: Discovery of interstellar dust entering the Earth's atmosphere. Nature 380, 323–325 (1996)ADSCrossRefGoogle Scholar
  78. Tholen, D.J.: Asteroid taxonomic classifications. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroids II, pp. 1139–1150. University of Arizona Press, Tucson, AZ (1989)Google Scholar
  79. Treiman, A.H., Gleason, J.D., Bogard, D.D.: The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000)ADSCrossRefGoogle Scholar
  80. Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)ADSCrossRefGoogle Scholar
  81. Urey, H.C., Craig, H.: The composition of stone meteorites and the origin of the meteorites. Geochim. Cosmochim. Acta 4, 36–82 (1953)ADSCrossRefGoogle Scholar
  82. Van Schmus, W.R., Wood, J.A.: A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–765 (1967)ADSCrossRefGoogle Scholar
  83. Wasson, J.T.: Meteorites: Their Record of Early Solar System History. Freeman, New York (1985)Google Scholar
  84. Wetherill, G.W., Chapman, C.R.: Asteroids and meteorites. In: Kerridge, J.F., Matthews, M.S. (eds.) Meteorites and the Early Solar System, pp. 35–67. The University of Arizona Press, Tucson, AZ (1988)Google Scholar
  85. Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astronom. Astrophys. 49, 67–117 (2011)ADSCrossRefGoogle Scholar
  86. Wlotzka, F.: A weathering scale for the ordinary chondrites. Meteoritics 28, 460 (1993)ADSGoogle Scholar
  87. Wood, J.A.: Meteorites and the Origin of Planets. McGraw-Hill, New York (1968)Google Scholar
  88. Wood, J.A.: Meteorites. In: Beatty, J.K., Chaikin, A. (eds) The New Solar System, 3rd ed., pp. 241–250. Sky, Cambridge, MA; Press Syndicate of University of Cambridge, Cambridge, UK) (1990)Google Scholar
  89. Zappalà, V., Cellino, A., Farinella, P., Knezevic, Z.: Asteroid families. I. Identification by hierarchical clustering and reliability assessment. Astronom. J. 100, 2030–2046 (1990)ADSCrossRefGoogle Scholar
  90. Zeigler, R.A., Korotev, R.L., Jolliff, B.L., Haskin, L.A.: Petrography of lunar meteorite MET 01210. Lunar and Planetary Science, XXXVI, Abstract No. 2385 (2005)Google Scholar
  91. Zeilik, M., Gregory, S.A.: Introductory Astronomy and Astrophysics. Saunders College Publishing, Fort Worth, TX (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eugene F. Milone
    • 1
  • William J. F. Wilson
    • 1
  1. 1.Dept. Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations