Advertisement

Planetary Ionospheres and Magnetospheres

  • Eugene F. Milone
  • William J. F. Wilson
Chapter
Part of the Astronomy and Astrophysics Library book series (AAL)

Abstract

We begin this chapter with a detailed review of the ionization and recombination processes in a planetary ionosphere, as exemplified by the ionosphere we know the most about, that of the Earth. We then extend the discussion to the ionospheres of Mars and Venus, and examine atmospheric loss mechanisms. After using Maxwell’s equations to learn about electromagnetic wave propagation in an ionosphere, we review basic magnetospheric processes and look at their effects, such as particle trapping and precipitation, the ring current and other magnetospheric currents, magnetospheric convection and substorms, and magnetospheric-ionospheric coupling and aurorae. We conclude the chapter with a discussion of the magnetospheres of Mercury, Venus and Mars.

Keywords

Solar Wind Field Line Interplanetary Magnetic Field Magnetic Storm Magnetic Reconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

  1. Acuña, M.H., Connerney, J.E.P., Wasilewski, P., Lin, R.P., Mitchell, D., Anderson, K.A., Carlson, C.W., McFadden, J., Reme, H., Mazelle, C., Vignes, D., Bauer, S.J., Cloutier, P., Ness, N.F.: Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106(E10), 23403–23417 (2001)ADSCrossRefGoogle Scholar
  2. Anderson, B.J., Johnson, C.L., Korth, H., Purucker, M.E., Winslow, R.M., Slavin, J.A., Solomon, S.C., McNutt Jr., R.L., Raines, J.M., Zurbuchen, T.H.: The global magnetic field of Mercury from MESSENGER orbital observations. Science 333, 1859–1862 (2011)ADSCrossRefGoogle Scholar
  3. André, M., Yau, A.: Theories and Observations of Ion Energization and outflow in the High latitude Magnetosphere. Space Sci. Rev. 80, 27–48 (1997)ADSCrossRefGoogle Scholar
  4. Angelopoulos, V.: The THEMIS Mission. Space Sci. Rev. 141, 5–34 (2008)ADSCrossRefGoogle Scholar
  5. Barabash, S., Fedorov, A., Sauvaud, J.J., Lundin, R., Russell, C.T., Futaana, Y., Zhang, T.L., Andersson, H., Brinkfeldt, K., Grigoriev, A., Holmström, M., Yamauchi, M., Asamura, K., Baumjohann, W., Lammer, H., Coates, A.J., Kataria, D.O., Linder, D.R., Curtis, C.C., Hsieh, K.C., Sandel, B.R., Grande, M., Gunell, H., Koskinen, H.E.J., Kallio, E., Riihelä, P., Säles, T., Schmidt, W., Kozyra, J., Krupp, N., Fränz, M., Woch, J., Luhmann, J., McKenna-Lawlor, S., Mazelle, C., Thocaven, J.-J., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Szego, K., Winningham, J.D., Frahm, R.A., Scherrer, J., Sharber, J.R., Wurz, P., Bochsler, P.: The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007)ADSCrossRefGoogle Scholar
  6. Cahill Jr., L.J.: Inflation of the inner magnetosphere. In: Carovillano, R.L., McClay, J.F., Radoski, H.R. (eds.) Physics of the Magnetosphere, pp. 263–270. Reidel, Dordrecht (1968)CrossRefGoogle Scholar
  7. Chen, R.H., Cravens, T.E., Nagy, A.F.: The Martian ionosphere in light of the Viking observations. J. Geophys. Res. 83, 3871–3876 (1978)ADSCrossRefGoogle Scholar
  8. Chaufray, J.Y., Bertaux, J.L., Leblanc, F., Quémerais, E.: Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195, 598–613 (2008)Google Scholar
  9. Connerney, J.E.P., Acuña, M.H., Wasilewski, P., Ness, N.F., Reme, H., Mazelle, C., Vignes, D., Lin, R.P., Mitchell, D., Cloutier, P.: Magnetic lineations in the ancient crust of Mars. Science 284(5415), 794–798 (1999)ADSCrossRefGoogle Scholar
  10. Crary, F.J., Bagenal, F.: Remanent ferromagnetism and the interior structure of Ganymede. J. Geophys. Res. 103, E11, 25,757-25,773 (1998)Google Scholar
  11. Elphic, R.C., Russell, C.T., Slavin, J.A., Brace, L.H.: Observations of the dayside ionopause and ionosphere of Venus. J. Geophys. Res. 85, 7679–7696 (1980)ADSCrossRefGoogle Scholar
  12. Fedorov, A., Barabash, S., Sauvaud, J.-A., Futaana, Y., Zhang, T.L., Lundin, R., Ferrier, C.: Measurements of the ion escape rates from Venus for solar minimum. J. Geophys. Res. 116, A07220 (2011). doi: 10.1029/2011JA016427 (9 pages) ADSGoogle Scholar
  13. Griffiths, D.J.: Introduction to Electrodynamics, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (1999)Google Scholar
  14. Halekas, J.S., Eastwood, J.P., Brain, D.A., Phan, T.D., Øieroset, M., Lin, R.P.: In situ observations of reconnection hall magnetic fields at Mars: evidence for ion diffusion region encounters. J. Geophys. Res. 114, A11204 (2009). doi: 10.1029/2009JA014544 (18 pages) ADSCrossRefGoogle Scholar
  15. Heyner, D., Wicht, J., Gómez-Pérez, N., Schmitt, D., Auster, H.-U., Glassmeier, K.-H.: Evidence from numerical experiments for a feedback dynamo generating Mercury’s magnetic field. Science 334, 1690–1693 (2011)ADSCrossRefGoogle Scholar
  16. Hunten, D.M.: Thermal and nonthermal escape mechanisms for terrestrial bodies. Planet. Space Sci. 30(8), 773–783 (1982)ADSCrossRefGoogle Scholar
  17. Hunten, D.M., Pepin, R.O., Walker, J.C.G.: Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)ADSCrossRefGoogle Scholar
  18. Knudsen, D.J.: Private communication (2013)Google Scholar
  19. Korte, M., Constable, C.: Improving geomagnetic field reconstructions for 0–3 ka. Phys. Earth Planet. In. 188, 247–259 (2011)ADSCrossRefGoogle Scholar
  20. Iribarne, J.V., Cho, H.-R.: Atmospheric Physics. Reidel, Dordrecht (1980)CrossRefGoogle Scholar
  21. Lammer, H., Lichtenegger, H.I.M., Biernat, H.K, Erkaev, N.V., Arshukova, I.L., Kolk, C., Gunell, H., Lukyanov, A., Holmstrom, M., Barabash, S., Zhang, T.L., Baumjohann, W.: Loss of hydrogen from the upper atmosphere of Venus. Planetary and Space Science 54, 1445-1456 (2006)ADSCrossRefGoogle Scholar
  22. Lammer, H., Lichtenegger, H.I.M., Kolb, C., Ribas, I., Guinan, E.F., Abart, R., Bauer, S.J.: Loss of water from Mars: implications for the oxidation of the soil. Icarus 165, 9–25 (2003)ADSCrossRefGoogle Scholar
  23. Lundin, R., Winningham, D., Barabash, S., Frahm, R., Brain, D., Nilsson, H., Holmström, M., Yamauchi, M., Sharber, J.R., Sauvaud, J.-A., Fedorov, A., Asamura, K., Hayakawa, H., Coates, A.J., Soobiah, Y., Curtis, C., Hsieh, K.C., Grande, M., Koskinen, H., Kallio, E., Kozyra, J., Woch, J., Fraenz, M., Luhmann, J., McKenna-Lawler, S., Orsini, S., Brandt, P., Wurz, P.: Auroral plasma acceleration above Martian magnetic anomalies. Space Sci. Rev. 126, 333–354 (2007)ADSCrossRefGoogle Scholar
  24. Lyatsky, W., Khazanov, G.V., Slavin, J.A.: Alfven Wave Reflection model of field-aligned currents at Mercury. Icarus 209, 40–45 (2010)ADSCrossRefGoogle Scholar
  25. McComas, D.J., Spence, H.E., Russell, C.T., Saunders, M.A.: The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91(A7), 7939–7953 (1986)ADSCrossRefGoogle Scholar
  26. Milan, S.E., Provan, G., Hubert, B.: Magnetic flux transport in the Dungey Cycle: a survey of dayside and nightside reconnection rates. J. Geophys. Res. 112, A01209 (2007). doi: 10.1029/2006JA011642 (13 pages) ADSGoogle Scholar
  27. Milone, E.F., Wilson, W.J.F.: Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, 2nd edn. Springer, New York (2014)CrossRefGoogle Scholar
  28. Nair, H., Allen, M., Anbar, A.D., Yung, Y.L.: A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994)ADSCrossRefGoogle Scholar
  29. Nimmo, F.: Why does Venus lack a magnetic field? Geology 3(11), 987–990 (2002)ADSCrossRefGoogle Scholar
  30. Olson, P., Deguen, R.: Eccentricity of the geomagnetic dipole caused by lopsided inner core growth. Nature Geoscience 5, 565-569 (2012)ADSCrossRefGoogle Scholar
  31. Parks, G.K.: Physics of Space Plasmas, an Introduction. Addison-Wesley, Redwood City, CA (1991)Google Scholar
  32. Parks, G.K.: Physics of Space Plasmas, an Introduction. 2nd ed. Harper-Collins, Perseus Books, Reading, MA (2003)Google Scholar
  33. Runcorn, S.K.: An ancient lunar magnetic dipole field. Nature 253, 701–703 (1975)ADSCrossRefGoogle Scholar
  34. Russell, C.T., Vaisberg, O.: The interaction of the solar wind with Venus. In: Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (eds.) Venus, pp. 873–879. University of Arizona Press, Tucson, AZ (1983)Google Scholar
  35. Schriver, D., Trávníček, P.M., Anderson, B.J., Ashour-Abdalla, M., Baker, D.N., Benna, M., Boardsen, S.A., Gold, R.E., Hellinger, P., Ho, G.C., Korth, H., Krimigis, S.M., McNutt Jr., R.L., Raines, J.M., Richard, R.L., Slavin, J.A., Solomon, S.C., Starr, R.D., Zurbuchen, T.H.: Quasi-trapped ion and electron populations at Mercury. Geophys. Res. Lett. 38, L23103 (2011). doi: 10.1029/2011GL049629 (6 pages) ADSGoogle Scholar
  36. Sergeev, V.A., Angelopoulos, V., Nakamura, R.: Recent advances in understanding substorm dynamics. Geophys. Res. Lett. 39, L05101 (2012). doi: 10.1029/2012GL050859 (10 pages) ADSGoogle Scholar
  37. Silsbee, H., Vestine, E.: Geomagnetic bays, their frequency and current systems. Terr. Magn. Atmos. Electr. 47, 195–208 (1942)CrossRefGoogle Scholar
  38. Slavin, J.A., Anderson, B.J., Baker, D.N., Benna, M., Boardsen, S.A., Gold, R.E., Ho, G.C., Imber, S.M., Korth, H., Krimigis, S.M., McNutt Jr., R.L., Raines, J.M., Sarantos, M., Schriver, D., Solomon, S.C., Trávníček, P., Zurbuchen, T.H.: MESSENGER and Mariner 10 Flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, A01215 (2012). doi: 10.1029/2011JA016900 (4 pages)Google Scholar
  39. Slavin, J.A., Anderson, B.J., Baker, D.N., Benna, M., Boardsen, S.A., Gloeckler, G., Gold, R.E., Ho, G.C., Korth, H., Krimigis, S.M., McNutt Jr., R.L., Nittler, L.R., Raines, J.M., Sarantos, M., Schriver, D., Solomon, S.C., Starr, R.D., Trávníček, P.M., Zurbuchen, T.H.: MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science 329, 665–668 (2010)ADSCrossRefGoogle Scholar
  40. Stevenson, D.J.: Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003)ADSCrossRefGoogle Scholar
  41. Stevenson, D.J., Spohn, T., Schubert, G.: Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983)ADSCrossRefGoogle Scholar
  42. Vasyliūnas, V.M., Song, P.: Meaning of ionospheric Joule heating. J. Geophys. Res. 110, A02301 (2005). doi: 10.1029/2004JA010615 (8 pages) ADSGoogle Scholar
  43. Wicht, J., Mandea, M., Takahashi, F., Christensen, U.R., Matsushima, M., Langlais, B.: The origin of Mercury’s internal magnetic field. Space Sci. Rev. 132, 261–290 (2007)ADSCrossRefGoogle Scholar
  44. Zhang, T.L., Lu, Q.M., Baumjohann, W., Russell, C.T., Fedorov, A., Barabash, S., Coates, A.J., Du, A.M., Cao, J.B., Nakamura, R., Teh, W.L., Wang, R.S., Dou, X.K., Wang, S., Glassmeier, K.H., Auster, H.U., Balikhin, M.: Magnetic reconnection in the near Venusian magnetotail. Science 336, 567–570 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eugene F. Milone
    • 1
  • William J. F. Wilson
    • 1
  1. 1.Dept. Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations