Skip to main content

Caffeine and Naps as Countermeasures for Sleep Loss

  • Chapter
  • First Online:
Sleep Deprivation and Disease

Abstract

Sleep loss is common, whether due to sleep deprivation (one extended wake episode) or sleep restriction (multiple sleep episodes of insufficient duration). Its causes encompass primary medical or psychiatric causes as well as self-selected behaviors such as not allowing sufficient time for sleep due to work, social, or family demands. Once primary causes are ruled out or addressed, there are a range of potential countermeasures that may be useful to increase alertness and performance. Here we review studies of caffeine (often in the form of coffee) and naps as countermeasures in the setting of sleep deprivation or sleep restriction, in laboratory and field study settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The price of fatigue. https://sleep.med.harvard.edu/file_download/100. Accessed March 2013.

  2. Falleti MG, Maruff P, Collie A, Darby DG, McStephen M. Qualitative similarities in cognitive impairment associated with 24 h of sustained wakefulness and a blood alcohol concentration of 0.05%. J Sleep Res. 2003;12(4):265–74.

    Article  PubMed  Google Scholar 

  3. Williamson AM, Feyer AM. Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occup Environ Med. 2000;57(10):649–55.

    Article  PubMed  CAS  Google Scholar 

  4. Dawson D, Reid K. Fatigue, alcohol and performance impairment. Nature. 1997;388(6639):235.

    Article  PubMed  CAS  Google Scholar 

  5. Bonnet MH, Balkin TJ, Dinges DF, et al. The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and Stimulant Task Force of the American Academy of Sleep Medicine. Sleep. 2005;28(9):1163–87.

    PubMed  Google Scholar 

  6. Morgenthaler TI, Kapur VK, Brown T, et al. Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. Sleep. 2007;30(12):1705–11.

    PubMed  Google Scholar 

  7. James JE, Keane MA. Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal. Hum Psychopharmacol. 2007;22(8):549–58.

    Article  PubMed  Google Scholar 

  8. Frary CD, Johnson RK, Wang MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc. 2005;105(1):110–3.

    Article  PubMed  Google Scholar 

  9. Durrant KL. Known and hidden sources of caffeine in drug, food, and natural products. J Am Pharm Assoc (Wash). 2002;42(4):625–37.

    Article  Google Scholar 

  10. Dorea JG, da Costa TH. Is coffee a functional food? Br J Nutr. 2005;93(6):773–82.

    Article  PubMed  CAS  Google Scholar 

  11. Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75(3):R77–87.

    Article  PubMed  CAS  Google Scholar 

  12. Why isn’t the amount of caffeine a product contains required on a food label? http://www.fda.gov/AboutFDA/Transparency/Basics/ucm194317.htm. Accessed March 2013.

  13. Select Committee on GRAS Substances (SCOGS) opinion: caffeine. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm256650.htm. Accessed March 2013.

  14. Caffeine content for coffee, tea, soda and more. www.mayoclinic.com/health/caffeine/AN01211. Accessed March 2013.

  15. Caffeine content of food & drugs. www.cspinet.org/new/cafchart.htm#table_coffees; http://ndb.nal.usda.gov/ndb/foods/list. Accessed March 2013.

  16. Caffeine and your body. http://www.fda.gov/downloads/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/UnderstandingOver-the-CounterMedicines/UCM205286.pdf. Accessed March 2013.

  17. New caffeine report shows no measurable change in consumption trends of the U.S. population. http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofFoods/CFSAN/CFSANFOIAElectronicReadingRoom/UCM333191.pdf. Accessed March 2013.

  18. Institute of Medicine. Caffeine for the sustainment of mental task performance: formulations for military operations. Washington, DC: National Academy Press; 2001.

    Google Scholar 

  19. Current Worldwide Annual Coffee Consumption per capita. www.ChartsBin.com/view/581. Accessed March 2013.

  20. Achermann P, Borbely AA. Mathematical models of sleep regulation. Front Biosci. 2003;8:S683–93.

    Article  PubMed  Google Scholar 

  21. Wyatt JK, Cajochen C, Ritz-De Cecco A, Czeisler CA, Dijk DJ. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness. Sleep. 2004;27(3):374–81.

    PubMed  Google Scholar 

  22. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci. 2006;26(31):8092–100.

    Article  PubMed  CAS  Google Scholar 

  23. Methippara MM, Kumar S, Alam MN, Szymusiak R, McGinty D. Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rats. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1715–23.

    Article  PubMed  CAS  Google Scholar 

  24. Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res. 2003;12(4):283–90.

    Article  PubMed  Google Scholar 

  25. Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW. Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci. 2009;29(5):1267–76.

    Article  PubMed  CAS  Google Scholar 

  26. Lieberman HR, Tharion WJ, Shukitt-Hale B, Speckman KL, Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land. Psychopharmacology (Berl). 2002;164(3):250–61.

    Article  CAS  Google Scholar 

  27. Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70(3):231–6.

    Article  PubMed  Google Scholar 

  28. Reiser MA, D’Souza T, Dryer SE. Effects of caffeine and 3-isobutyl-1-methylxanthine on voltage-activated potassium currents in vertebrate neurones and secretory cells. Br J Pharmacol. 1996;118(8):2145–51.

    Article  PubMed  CAS  Google Scholar 

  29. Bianchi MT, Botzolakis EJ. Targeting ligand-gated ion channels in neurology and psychiatry: is pharmacological promiscuity an obstacle or an opportunity? BMC Pharmacol. 2010;10:3.

    Article  PubMed  Google Scholar 

  30. Fuxe K, Ferre S, Canals M, et al. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci. 2005;26(2–3):209–20.

    Article  PubMed  CAS  Google Scholar 

  31. Fuxe K, Agnati LF, Jacobsen K, et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology. 2003;61(11 Suppl 6):S19–23.

    Article  PubMed  CAS  Google Scholar 

  32. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med. 2012;366(20):1891–904.

    Article  PubMed  CAS  Google Scholar 

  33. Caffeine drug information section. www.uptodate.com. Accessed Feb 2013.

  34. Kroon LA. Drug interactions with smoking. Am J Health Syst Pharm. 2007;64(18):1917–21.

    Article  PubMed  CAS  Google Scholar 

  35. de Leon J, Diaz FJ, Rogers T, et al. A pilot study of plasma caffeine concentrations in a US sample of smoker and nonsmoker volunteers. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(1):165–71.

    Article  PubMed  Google Scholar 

  36. McKim EM. Caffeine and its effects on pregnancy and the neonate. J Nurse Midwifery. 1991;36(4):226–31.

    Article  PubMed  CAS  Google Scholar 

  37. American Academy of Pediatrics Committee on Drugs. Transfer of drugs and other chemicals into human milk. Pediatrics. 2001;108(3):776–89.

    Google Scholar 

  38. Pelchovitz DJ, Goldberger JJ. Caffeine and cardiac arrhythmias: a review of the evidence. Am J Med. 2011;124(4):284–9.

    Article  PubMed  CAS  Google Scholar 

  39. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.

    PubMed  CAS  Google Scholar 

  40. Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet. 2003;16(6):411–20.

    Article  PubMed  CAS  Google Scholar 

  41. Hewlett P, Smith A. Effects of repeated doses of caffeine on performance and alertness: new data and secondary analyses. Hum Psychopharmacol. 2007;22(6):339–50.

    Article  PubMed  CAS  Google Scholar 

  42. Ozsungur S, Brenner D, El-Sohemy A. Fourteen well-described caffeine withdrawal symptoms factor into three clusters. Psychopharmacology (Berl). 2009;201(4):541–8.

    Article  CAS  Google Scholar 

  43. Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl). 2010;211(3):245–57.

    Article  CAS  Google Scholar 

  44. Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33(12):2791–800.

    Article  PubMed  CAS  Google Scholar 

  45. Womack CJ, Saunders MJ, Bechtel MK, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7.

    Article  PubMed  CAS  Google Scholar 

  46. Josse AR, Da Costa LA, Campos H, El-Sohemy A. Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr. 2012;96(3):665–71.

    Article  PubMed  Google Scholar 

  47. Rodenburg EM, Eijgelsheim M, Geleijnse JM, et al. CYP1A2 and coffee intake and the modifying effect of sex, age, and smoking. Am J Clin Nutr. 2012;96(1):182–7.

    Article  PubMed  CAS  Google Scholar 

  48. Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr. 2007;86(1):240–4.

    PubMed  CAS  Google Scholar 

  49. Amin N, Byrne E, Johnson J, et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry. 2012;17(11):1116–29.

    Article  PubMed  CAS  Google Scholar 

  50. Alsene K, Deckert J, Sand P, de Wit H. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2003;28(9):1694–702.

    Article  PubMed  CAS  Google Scholar 

  51. Sulem P, Gudbjartsson DF, Geller F, et al. Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption. Hum Mol Genet. 2011;20(10):2071–7.

    Article  PubMed  CAS  Google Scholar 

  52. Roehrs T, Roth T. Caffeine: sleep and daytime sleepiness. Sleep Med Rev. 2008;12(2):153–62.

    Article  PubMed  Google Scholar 

  53. Wright Jr KP, Badia P, Myers BL, Plenzler SC. Combination of bright light and caffeine as a countermeasure for impaired alertness and performance during extended sleep deprivation. J Sleep Res. 1997;6(1):26–35.

    Article  PubMed  Google Scholar 

  54. Reyner LA, Horne JA. Evaluation “in-car” countermeasures to sleepiness: cold air and radio. Sleep. 1998;21(1):46–50.

    PubMed  CAS  Google Scholar 

  55. Phipps-Nelson J, Redman JR, Rajaratnam SM. Temporal profile of prolonged, night-time driving performance: breaks from driving temporarily reduce time-on-task fatigue but not sleepiness. J Sleep Res. 2011;20(3):404–15.

    Article  PubMed  Google Scholar 

  56. Schwarz JF, Ingre M, Fors C, et al. In-car countermeasures open window and music revisited on the real road: popular but hardly effective against driver sleepiness. J Sleep Res. 2012;21(5):595–9.

    Article  PubMed  Google Scholar 

  57. Anund A, Kecklund G, Peters B, Akerstedt T. Driver sleepiness and individual differences in preferences for countermeasures. J Sleep Res. 2008;17(1):16–22.

    Article  PubMed  Google Scholar 

  58. Biggs SN, Smith A, Dorrian J, et al. Perception of simulated driving performance after sleep restriction and caffeine. J Psychosom Res. 2007;63(6):573–7.

    Article  PubMed  Google Scholar 

  59. Horne JA, Reyner LA. Counteracting driver sleepiness: effects of napping, caffeine, and placebo. Psychophysiology. 1996;33(3):306–9.

    Article  PubMed  CAS  Google Scholar 

  60. Reyner LA, Horne JA. Suppression of sleepiness in drivers: combination of caffeine with a short nap. Psychophysiology. 1997;34(6):721–5.

    Article  PubMed  CAS  Google Scholar 

  61. Reyner LA, Horne JA. Early morning driver sleepiness: effectiveness of 200 mg caffeine. Psychophysiology. 2000;37(2):251–6.

    Article  PubMed  CAS  Google Scholar 

  62. Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26(2):117–26.

    PubMed  Google Scholar 

  63. De Valck E, Cluydts R. Slow-release caffeine as a countermeasure to driver sleepiness induced by partial sleep deprivation. J Sleep Res. 2001;10(3):203–9.

    Article  PubMed  Google Scholar 

  64. De Valck E, De Groot E, Cluydts R. Effects of slow-release caffeine and a nap on driving simulator performance after partial sleep deprivation. Percept Mot Skills. 2003;96(1):67–78.

    Article  PubMed  Google Scholar 

  65. Beaumont M, Batejat D, Pierard C, et al. Slow release caffeine and prolonged (64-h) continuous wakefulness: effects on vigilance and cognitive performance. J Sleep Res. 2001;10(4):265–76.

    Article  PubMed  CAS  Google Scholar 

  66. Patat A, Rosenzweig P, Enslen M, et al. Effects of a new slow release formulation of caffeine on EEG, psychomotor and cognitive functions in sleep-deprived subjects. Hum Psychopharmacol. 2000;15(3):153–70.

    Article  PubMed  CAS  Google Scholar 

  67. Philip P, Taillard J, Moore N, et al. The effects of coffee and napping on nighttime highway driving: a randomized trial. Ann Intern Med. 2006;144(11):785–91.

    Article  PubMed  Google Scholar 

  68. Sagaspe P, Taillard J, Chaumet G, Moore N, Bioulac B, Philip P. Aging and nocturnal driving: better with coffee or a nap? A randomized study. Sleep. 2007;30(12):1808–13.

    PubMed  Google Scholar 

  69. Brooks A, Lack L. A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative? Sleep. 2006;29(6):831–40.

    Google Scholar 

  70. Tietzel AJ, Lack LC. The short-term benefits of brief and long naps following nocturnal sleep restriction. Sleep. 2001;24(3):293–300.

    Google Scholar 

  71. Vgontzas AN, Pejovic S, Zoumakis E, et al. Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. Am J Physiol Endocrinol Metab. 2007;292(1):E253–61.

    Article  PubMed  CAS  Google Scholar 

  72. Helmus T, Rosenthal L, Bishop C, Roehrs T, Syron ML, Roth T. The alerting effects of short and long naps in narcoleptic, sleep deprived, and alert individuals. Sleep. 1997;20(4):251–7.

    PubMed  CAS  Google Scholar 

  73. Aggarwal R, Mishra A, Crochet P, Sirimanna P, Darzi A. Effect of caffeine and taurine on simulated laparoscopy performed following sleep deprivation. Br J Surg. 2011;98(11):1666–72.

    Article  PubMed  CAS  Google Scholar 

  74. Van Dongen HP, Price NJ, Mullington JM, Szuba MP, Kapoor SC, Dinges DF. Caffeine eliminates psychomotor vigilance deficits from sleep inertia. Sleep. 2001;24(7):813–9.

    PubMed  Google Scholar 

  75. Bonnet MH, Gomez S, Wirth O, Arand DL. The use of caffeine versus prophylactic naps in sustained performance. Sleep. 1995;18(2):97–104.

    PubMed  CAS  Google Scholar 

  76. Schweitzer PK, Randazzo AC, Stone K, Erman M, Walsh JK. Laboratory and field studies of naps and caffeine as practical countermeasures for sleep-wake problems associated with night work. Sleep. 2006;29(1):39–50.

    PubMed  Google Scholar 

  77. Rosa RR. Napping at home and alertness on the job in rotating shift workers. Sleep. 1993;16(8):727–35.

    PubMed  CAS  Google Scholar 

  78. Sallinen M, Harma M, Akerstedt T, Rosa R, Lillqvist O. Promoting alertness with a short nap during a night shift. J Sleep Res. 1998;7(4):240–7.

    Article  PubMed  CAS  Google Scholar 

  79. Hofer-Tinguely G, Achermann P, Landolt HP, et al. Sleep inertia: performance changes after sleep, rest and active waking. Brain Res Cogn Brain Res. 2005;22(3):323–31.

    Article  PubMed  Google Scholar 

  80. Tremaine R, Dorrian J, Lack L, et al. The relationship between subjective and objective sleepiness and performance during a simulated night-shift with a nap countermeasure. Appl Ergon. 2010;42(1):52–61.

    Article  PubMed  Google Scholar 

  81. Macchi MM, Boulos Z, Ranney T, Simmons L, Campbell SS. Effects of an afternoon nap on nighttime alertness and performance in long-haul drivers. Accid Anal Prev. 2002;34(6):825–34.

    Article  PubMed  Google Scholar 

  82. Pilcher JJ, Popkin SM, Adkins K, Roether L. Self-report naps in irregular work schedules. Ind Health. 2005;43(1):123–8.

    Article  PubMed  Google Scholar 

  83. Garbarino S, Mascialino B, Penco MA, et al. Professional shift-work drivers who adopt prophylactic naps can reduce the risk of car accidents during night work. Sleep. 2004;27(7):1295–302.

    PubMed  Google Scholar 

  84. Killgore WD, Rupp TL, Grugle NL, Reichardt RM, Lipizzi EL, Balkin TJ. Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness. J Sleep Res. 2008;17(3):309–21.

    Article  PubMed  Google Scholar 

  85. Killgore WD, Grugle NL, Balkin TJ. Gambling when sleep deprived: don’t bet on stimulants. Chronobiol Int. 2012;29(1):43–54.

    Article  PubMed  Google Scholar 

  86. Baranski JV, Pigeau RA. Self-monitoring cognitive performance during sleep deprivation: effects of modafinil, d-amphetamine and placebo. J Sleep Res. 1997;6(2):84–91.

    Article  PubMed  CAS  Google Scholar 

  87. Cohen DA, Wang W, Klerman EB, Rajaratnam SM. Ramelteon prior to a short evening nap impairs neurobehavioral performance for up to 12 hours after awakening. J Clin Sleep Med. 2010;6(6):565–71.

    PubMed  Google Scholar 

  88. Horne J. The end of sleep: ‘sleep debt’ versus biological adaptation of human sleep to waking needs. Biol Psychol. 2011;87(1):1–14.

    Article  PubMed  Google Scholar 

  89. Asaoka S, Fukuda K, Murphy TI, Abe T, Inoue Y. The effects of a nighttime nap on the error-monitoring functions during extended wakefulness. Sleep. 2012;35(6):871–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt T. Bianchi M.D., Ph.D., M.M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alameddine, Y., Klerman, E.B., Bianchi, M.T. (2014). Caffeine and Naps as Countermeasures for Sleep Loss. In: Bianchi, M. (eds) Sleep Deprivation and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9087-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9087-6_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9086-9

  • Online ISBN: 978-1-4614-9087-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics