Skip to main content

Redox-Based Memristive Devices

  • Chapter
  • First Online:
Memristors and Memristive Systems

Abstract

Over the past few decades, MOSFET-based nonvolatile memories have played a significant role in the growth of the portable electronic market. However, aggressive device scaling trends are about to reach their limits. In the quest for the next generation nonvolatile memory device, several mechanisms such as redox-based, phase-change, magnetic-junction, and ferroelectrics have recently been extensively investigated. A highly promising candidate that is expected to succeed the flash memory device is the redox-based resistive random access memory (ReRAM). The fundamental requirements of a nonvolatile memory are nondestructive write/read operations at a speed comparable to current logic devices, infinite retention, low energy consumption, and integration capability with the current CMOS process. In this chapter, we will describe the current understanding of the physical mechanism of redox-based resistive switching and address several technological aspects of metal-oxide ReRAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Lai, Flash memories: successes and challenges. IBM J. Res. Dev. 52, 529–535 (2008)

    Article  Google Scholar 

  2. G. Burr, B. Kurdi, J. Scott, C. Lam, K. Gopalakrishnan, R. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008)

    Article  Google Scholar 

  3. S.A. Wolf, J. Lu, M.R. Stan, E. Chen, D.M. Treger, The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98, 2155–2168 (2010)

    Article  Google Scholar 

  4. A. Sheikholeslami, P.G. Gulak, A survey of circuit innovations in ferroelectric random-access memories. Proc. IEEE 88, 667–689 (2000)

    Article  Google Scholar 

  5. W. Zhao, S. Chaudhuri, C. Accoto, J.-O. Klein, D. Ravelosona, C. Chappert, P. Mazoyer, High density spin-transfer torque (STT)-MRAM based on cross-point architecture, in 2012 4th IEEE International Memory Workshop (IMW) (2012), p. 4

    Google Scholar 

  6. R. Waser (ed.), Nanoelectronics and Information Technology, 3rd edn. (Wiley-VCH, Berlin, 2012)

    Google Scholar 

  7. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997)

    Article  Google Scholar 

  8. M.N. Kozicki, M. Yun, L. Hilt, A. Singh, Applications of programmable resistance changes in metal-doped chalcogenide. J. Electrochem. Soc. 9913, 298–309 (1999)

    Google Scholar 

  9. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000)

    Article  Google Scholar 

  10. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 33715-1–33715-10 (2005)

    Google Scholar 

  11. Y.M. Kim, J.S. Lee, Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104, 114115 (2008)

    Article  Google Scholar 

  12. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U.-I. Chung, I.T. Moon, Electron Devices Meeting, Technical Digest. IEEE International, pp. 587–590, 13–15 dec. (2004)

    Google Scholar 

  13. Y. Wu, S. Yu, B. Lee, P. Wong, Low-power TiN/Al(2)O(3)/Pt resistive switching device with sub-20μA switching current and gradual resistance modulation. J. Appl. Phys. 110, 94104/1–94104/5 (2011)

    Google Scholar 

  14. L. Chen, Q.Q. Sun, J.J. Gu, Y. Xu, S.J. Ding, D.W. Zhang, Bipolar resistive switching characteristics of atomic layer deposited Nb2O5 thin films for nonvolatile memory application. Curr. Appl. Phys. 11, 849–852 (2011)

    Article  Google Scholar 

  15. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  Google Scholar 

  16. S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000)

    Article  Google Scholar 

  17. D. Morgan, M. Howes, Electroforming and switching in copper oxide films. Phys. Status Solidi (A) Appl. Res. 21, 191–195 (1974)

    Article  Google Scholar 

  18. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  19. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, M. Mitkova, Nonvolatile memory based on solid electrolytes, in 2004 Non-Volatile Memory Technology Symposium, Proceedings (2004), pp. 10–17

    Google Scholar 

  20. S.-E. Ahn, M.-J. Lee, Y. Park, B.S. Kang, C.B. Lee, K.H. Kim, Write current reduction in transition metal oxide based resistance-change memory. Adv. Mater. 20, 924 (2008)

    Article  Google Scholar 

  21. B. Govoreanu, G.S. Kar, Y.-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, M. Jurczak, Electron Devices Meeting, Technical Digest. IEEE International, pp.31.6.1–31.6.4, 5–7 dec. (2011)

    Google Scholar 

  22. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  23. S. Yu, X. Guan, H.P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl. Phys. Lett. 99, 063507–063507 (2011)

    Article  Google Scholar 

  24. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnology 22, 254003/1–254003/22 (2011)

    Google Scholar 

  25. S.G. Park, B. Magyari-Koepe, Y. Nishi, Impact of oxygen vacancy ordering on the formation of a conductive filament in TiO2 for resistive switching memory. IEEE Electron Device Lett. 32, 197–199 (2011)

    Article  Google Scholar 

  26. F. Pan, C. Chen, Z. Wang, Y. Yang, J. Yang, F. Zeng, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci. Mater. Int. 20, 1–15 (2010)

    Article  Google Scholar 

  27. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  28. C. Rohde, B.J. Choi, D.S. Jeong, S.l. Choi, J. Zhao and C.S. Hwang, Identification of a determining parameter for resistive switching of TiO2 thin films, Appl. Phys. Lett. 86, 262907–09 (2005)

    Google Scholar 

  29. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004)

    Article  Google Scholar 

  30. R. Waser, S. Menzel, R. Bruchhaus, Nanoelectronics and Information Technology, 3rd edn. (Wiley-VCH, Berlin, 2012)

    Google Scholar 

  31. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88, 232112-1–232112-3 (2006)

    Google Scholar 

  32. G. Bersuker, D.C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110, 124518/1 (2011)

    Google Scholar 

  33. A. Foster, A. Shluger, R. Nieminen, Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. Lett. 89, 225901/1 (2002)

    Google Scholar 

  34. Y. Hirose, H. Hirose, Polarity-dependent memory switching and behaviour of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767–2772 (1976)

    Article  Google Scholar 

  35. C. Schindler, G. Staikov, R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 072109/1–072109/3 (2009)

    Google Scholar 

  36. A. Chen, V.V. Zhirnov, J.A. Hutchby, C. Michael Garner, ITRS chapter: emerging research devices. Future Fab. Special ITRS Focus (44) (2013)

    Google Scholar 

  37. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008)

    Article  Google Scholar 

  38. M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-K. Yoo, Electron Devices Meeting, Technical Digest. IEEE International, pp. 771–774, 10–12 dec. (2007)

    Google Scholar 

  39. G. Kar, A. Fantini, Y. Chen, V. Paraschiv, B. Govoreanu, H. Hody, N. Jossart, H. Tielens, S. Brus, O. Richard, T. Vandeweyer, D. Wouters, L. Altimime, M. Jurczak, Process-improved RRAM cell performance and reliability and paving the way for manufacturability and scalability for high density memory application, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 157–158

    Google Scholar 

  40. E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010)

    Article  Google Scholar 

  41. S. Tappertzhofen, E. Linn, L. Nielen, R. Rosezin, F. Lentz, R. Bruchhaus, I. Valov, U. Böttger, R. Waser, Capacity based nondestructive readout for complementary resistive switches. Nanotechnology 22, 395203/1–395203/7 (2011)

    Article  Google Scholar 

  42. B.S. Kang, S.E. Ahn, M.J. Lee, G. Stefanovich, K.H. Kim, W.X. Xianyu, C.B. Lee, Y. Park, I.G. Baek, B.H. Park, High-current-density CuOx/InZnOx thin-film diodes for cross-point memory applications. Adv. Mater. 20, 3066–3069 (2008)

    Article  Google Scholar 

  43. M.-J. Lee, Y. Park, D.-S. Suh, E.-H. Lee, S. Seo, D.-C. Kim, R. Jung, B.-S. Kang, S.-E. Ahn, C.B. Lee, D.H. Seo, Y.-K. Cha, I.-K. Yoo, J.-S. Kim, B.H. Park, Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19, 3919–3923 (2007)

    Article  Google Scholar 

  44. Q. Zuo, S. Long, Q. Liu, S. Zhang, Q. Wang, Y. Li, Y. Wang, M. Liu, Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106, 73724/1–73724/5 (2009)

    Google Scholar 

  45. M.-J. Lee, S. Seo, D.-C. Kim, S.-E. Ahn, D.H. Seo, I.-K. Yoo, A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv. Mater. 19, 73 (2007)

    Article  Google Scholar 

  46. Q. Xia, J.J. Yang, W. Wu, X. Li, R.S. Williams, Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 10, 2909–2914 (2010)

    Article  Google Scholar 

  47. H. Lan, Y. Ding, Nanoimprint Lithography (InTech, 2010). Available from: http://www.intechopen.com/books/lithography/nanoimprintlithography

  48. M. Meier, C. Nauenheim, S. Gilles, D. Mayer, C. Kuegeler, R. Waser, Nanoimprint for future non-volatile memory and logic devices. Microelectron. Eng. 85, 870–872 (2008)

    Article  Google Scholar 

  49. H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, M.J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, in IEEE International Electron Devices Meeting 2008, Technical Digest (2008), pp. 297–300

    Google Scholar 

  50. M. Wu, Y. Lin, W. Jang, C. Lin, T. Tseng, Low-power and highly reliable multilevel operation in ZrO2 1T1R RRAM. IEEE Electron Device Lett. 32, 1026–1028 (2011)

    Article  Google Scholar 

  51. W.C. Chien, Y.R. Chen, Y.C. Chen, A.T.H. Chuang, F.M. Lee, Y.Y. Lin, E.K. Lai, Y.H. Shih, K.Y. Hsieh, C.Y. Lu, A forming-free WOX resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability, in 2010 International Electron Devices Meeting – Technical Digest (2010)

    Google Scholar 

  52. Y. Dong, G. Yu, M. McAlpine, W. Lu, C. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8, 386–391 (2008)

    Article  Google Scholar 

  53. K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J. Kim, B. Park, Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 132, 6634–6635 (2010)

    Article  Google Scholar 

  54. S.I. Kim, J.H. Lee, Y.W. Chang, S.S. Hwang, K.-H. Yoo, Reversible resistive switching behaviors in NiO nanowires. Appl. Phys. Lett. 93, 033503–05 (2008)

    Google Scholar 

  55. Y. Chiang, W. Chang, C. Ho, C. Chen, C. Ho, S. Lin, T. Wu, J. He, Single-ZnO-nanowire memory. IEEE Trans. Electron Devices 58, 1735–1740 (2011)

    Article  Google Scholar 

  56. E. Herderick, J. Tresback, A. Vasiliev, N. Padture, Template-directed synthesis, characterization and electrical properties of Au-TiO2-Au heterojunction nanowires. Nanotechnology 18, 155204–09 (2007)

    Google Scholar 

  57. C. Nauenheim, C. Kuegeler, A. Ruediger, R. Waser, Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions. Appl. Phys. Lett. 96, 122902 (2010)

    Article  Google Scholar 

  58. K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, Y. Sugiyama, Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 033506 (2008)

    Article  Google Scholar 

  59. B. Butcher, S. Koveshnikov, D. Gilmer, G. Bersuker, M. Sung, A. Kalantarian, C. Park, R. Geer, Y. Nishi, P. Kirsch, R. Jammy, High endurance performance of 1T1R HfOx based RRAM at low (20μA) operative current and elevated (150°C) temperature, in IEEE International Integrated Reliability Workshop Final Report (2011), pp. 146–150

    Google Scholar 

  60. Y. Wu, B. Lee, H. Wong, Al2O3-based RRAM using atomic layer deposition (ALD) with 1-μA RESET current. IEEE Electron Device Lett. 31, 1449–1451 (2010)

    Article  Google Scholar 

  61. W. Kim, S. Park, Z. Zhang, Y. Yang-Liauw, D. Sekar, H. Wong, S. Wong, Forming-free nitrogen-doped AlOX RRAM with sub-μA programming current, in Digest of Technical Papers – Symposium on VLSI Technology (2011), pp. 22–23

    Google Scholar 

  62. L. Goux, A. Fantini, G. Kar, Y. Chen, N. Jossart, R. Degraeve, S. Clima, B. Govoreanu, G. Lorenzo, G. Pourtois, D. Wouters, J. Kittl, L. Altimime, M. Jurczak, Ultralow sub-500nA operating current high-performance TiN\Al2O3\HfO2\Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 159–160

    Google Scholar 

  63. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193–200 (2009)

    Article  Google Scholar 

  64. K. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011)

    Article  Google Scholar 

  65. F. Nardi, S. Larentis, S. Balatti, D. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM. Part I: Experimental study. IEEE Trans. Electron Devices 59, 2461–2467 (2012)

    Article  Google Scholar 

  66. D. Ielmini, Filamentary-switching model in RRAM for time, energy and scaling projections, in 2011 IEEE International Electron Devices Meeting – IEDM’11 (2011), pp. 17.2.1–17.2.4

    Google Scholar 

  67. S. Yu, H. Wong, A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett. 31, 1455–1457 (2010)

    Article  Google Scholar 

  68. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012)

    Article  Google Scholar 

  69. H. Schroeder, V.V. Zhirnov, R.K. Cavin, R. Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107, 054517/1–054517/8 (2010)

    Google Scholar 

  70. C. Hermes, Interaction between redox-based resistive switching mechanisms. Forschungszentrum Jülich GmbH 25, 134 (2013)

    Google Scholar 

  71. D.B. Strukov, R.S. Williams, Intrinsic constrains on thermally-assisted memristive switching. Appl. Phys. A Mater. Sci. Process. 102, 851–855 (2011)

    Article  Google Scholar 

  72. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, H. Horiba, H. Kumigashira, M. Oshima, Electron Devices Meeting, Technical Digest. IEEE International, pp. 1–4, 15–17 Dec. (2008)

    Google Scholar 

  73. B. Gao, J. Kang, H. Zhang, B. Sun, B. Chen, L. Liu, X. Liu, R. Han, Y. Wang, B. Yu, Z. Fang, H. Yu, D. Kwong, Oxide-based RRAM: physical based retention projection, in 2010 Proceedings of the European Solid State Device Research Conference, ESSDERC 2010 (2010), pp. 392–395

    Google Scholar 

  74. Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, Retention model for high-density ReRAM, in 2012 4th IEEE International Memory Workshop, IMW 2012 (2012)

    Google Scholar 

  75. T. Ninomiya, T. Takagi, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, Y. Ikeda, K. Kawai, Y. Kato, Y. Kawashima, S. Ito, T. Mikawa, K. Shimakawa, K. Aono, Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 73–74

    Google Scholar 

  76. Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, Demonstration of high-density ReRAM ensuring 10-year retention at 85°C based on a newly developed reliability model, in Technical Digest – International Electron Devices Meeting, IEDM (2011), pp. 31.4.1–31.4.4

    Google Scholar 

  77. X.T. Zhang, Q.X. Yu, Y.P. Yao, X.G. Li, Ultrafast resistive switching in SrTiO3:Nb single crystal. Appl. Phys. Lett. 97, 222117/1–222117/3 (2010)

    Google Scholar 

  78. C. Hermes, M. Wimmer, S. Menzel, K. Fleck, G. Bruns, M. Salinga, U. Boettger, R. Bruchhaus, T. Schmitz-Kempen, M. Wuttig, R. Waser, Analysis of transient currents during ultra fast switching of TiO2 nanocrossbar devices. IEEE Electron Device Lett. 32, 1116–1118 (2011)

    Article  Google Scholar 

  79. H. Lee, Y. Chen, P. Chen, P. Gu, Y. Hsu, S. Wang, W. Liu, C. Tsai, S. Sheu, P. Chiang, W. Lin, C. Lin, W. Chen, F. Chen, C. Lien, and M. Tsai, Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance, in Technical Digest – International Electron Devices Meeting, IEDM (2010), pp. 19.7.1–19.7.4

    Google Scholar 

  80. S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011)

    Article  Google Scholar 

  81. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203/1–485203/7 (2011)

    Article  Google Scholar 

  82. B. Chen, Y. Lu, B. Gao, Y.H. Fu, F.F. Zhang, P. Huang, Y.S. Chen, L.F. Liu, X.Y. Liu, J.F. Kang, Y.Y. Wang, Z. Fang, H.Y. Yu, X. Li, X.P. Wang, N. Singh, G.Q. Lo, D.L. Kwong, Physical mechanisms of endurance degradation in TMO-RRAM, in 2011 IEEE International Electron Devices Meeting (IEDM) (2011)

    Google Scholar 

  83. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  Google Scholar 

  84. H.Y. Lee, Y.S. Chen, P.S. Chen, P.Y. Gu, Y.Y. Hsu, S.M. Wang, W.H. Liu, C.H. Tsai, S.S. Sheu, P.C. Chiang, W.P. Lin, C.H. Lin, W.S. Chen, F.T. Chen, C.H. Lien, M. Tsai, Evidence and solution of Over-RESET Problem for HfOX based resistive memory with sub-ns switching speed and high endurance, in 2010 International Electron Devices Meeting – Technical Digest (2010)

    Google Scholar 

  85. Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, A. Fantini, G. Kar, D. Wouters, G. Groeseneken, J. Kittl, M. Jurczak, L. Altimime, Balancing SET/RESET pulse for >1010 endurance in HfO2 1T1R bipolar RRAM. IEEE Trans. Electron Devices 59, 3243–3249 (2012)

    Article  Google Scholar 

  86. W.-C. Chien, M.-H. Lee, F.-M. Lee, Y.-Y. Lin, H.-L. Lung, K.-Y. Hsieh, C.-Y. Lu, A multi-level 40nm WOX resistive memory with excellent reliability, in 2011 IEEE International Electron Devices Meeting – IEDM’11 (2011)

    Google Scholar 

  87. Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, M. Liu, Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 21, 45202/1–45202/6 (2010)

    Google Scholar 

  88. J. Park, K.P. Biju, S. Jung, W. Lee, J. Lee, S. Kim, S. Park, J. Shin, H. Hwang, Multibit operation of TiOx-based ReRAM by schottky barrier height engineering. IEEE Electron Device Lett. 32, 476–478 (2011)

    Article  Google Scholar 

  89. M. Terai, Y. Sakotsubo, S. Kotsuji, H. Hada, Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation. IEEE Electron Device Lett. 31, 204–206 (2010)

    Article  Google Scholar 

  90. S. Yu, Y. Wu, H. Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98, 103514/1–103514/3 (2011)

    Google Scholar 

  91. S. Lee, Y. Kim, M. Chang, K. Kim, C. Lee, J. Hur, G. Park, D. Lee, M. Lee, C. Kim, U. Chung, I. Yoo, K. Kim, Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory, in Digest of Technical Papers – Symposium on VLSI Technology (2012), pp. 71–72

    Google Scholar 

  92. V.V. Zhirnov, R. Meade, R.K. Cavin, G. Sandhu, Scaling limits of resistive memories. Nanotechnology 22, 254027/1–254027/21 (2011)

    Article  Google Scholar 

  93. L. Goux, J.G. Lisoni, X.P. Wang, M. Jurczak, D.J. Wouters, Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low power Ni/NiO/Ni memory cells. IEEE Trans. Electron Devices 56, 2363 (2009)

    Article  Google Scholar 

  94. C. Nauenheim, Integration of resistive switching devices in crossbar structures, Phd thesis, Forschungszentrum Jlich GmbH (2009)

    Google Scholar 

  95. B. Lee, H. Wong, NiO resistance change memory with a novel structure for 3D integration and improved confinement of conduction path, in 2009 Symposium on VLSI Technology, Digest of Technical Papers (2009), pp. 28–29

    Google Scholar 

  96. D. Ielmini, F. Nardi, C. Cagli, Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58, 1–8 (2011)

    Google Scholar 

  97. S. Tanachutiwat, M. Liu, W. Wang, FPGA based on integration of CMOS and RRAM. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 19, 2023–2032 (2011)

    Article  Google Scholar 

  98. K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K.P. Biju, J. Kong, K. Lee, B. Lee, H. Hwang, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22, 254023 (2011)

    Article  Google Scholar 

  99. T. Chang, S. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011)

    Article  Google Scholar 

  100. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.P. Wong, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011)

    Article  Google Scholar 

  101. G.S. Snider, Spike-timing-dependent learning in memristive nanodevices, in IEEE International Symposium on Nanoscale Architectures (2008), pp. 85–92

    Google Scholar 

  102. H. Jeong, Y. Kim, J. Lee, S. Choi, A low-temperature-grown TiO2-based device for the flexible stacked RRAM application. Nanotechnology 21, 115203 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Susanne Hoffmann-Eifert (FZ Jülich) for valuable feedbacks during the writing and Thomas Pössinger (RWTH Aachen) for editing and improving the figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rana, V., Waser, R. (2014). Redox-Based Memristive Devices. In: Tetzlaff, R. (eds) Memristors and Memristive Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9068-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9068-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9067-8

  • Online ISBN: 978-1-4614-9068-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics