Memristive Devices: Switching Effects, Modeling, and Applications



The rapid, exponential growth of modern electronics has brought about profound changes to our daily lives. However, maintaining the growth trend now faces significant challenges at both the fundamental and practical levels [1]. Possible solutions include More Moore—developing new, alternative device structures, and materials while maintaining the same basic computer architecture, and More Than Moore—enabling alternative computing architectures and hybrid integration to achieve increased system functionality without trying to push the devices beyond limits. In particular, an increasing number of computing tasks today are related to handling large amounts of data, e.g. image processing as an example. Conventional von Neumann digital computers, with separate memory and processer units, become less and less efficient when large amount of data have to be moved around and processed quickly. Alternative approaches such as bio-inspired neuromorphic circuits, with distributed computing and localized storage in networks, become attractive options [2–6].


  1. 1.
    International Technology Roadmap for Semiconductors (ITRS), 2011 Edition.
  2. 2.
    C. Mead, Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990)CrossRefGoogle Scholar
  3. 3.
    C.-S. Poon, K. Zhou, Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Front. Neurosci. 5, 108–108 (2011)Google Scholar
  4. 4.
    D.S. Modha, R. Ananthanarayanan, S.K. Esser, A. Ndirango, A.J. Sherbondy, R. Singh, Cognitive computing. Commun. ACM 54, 62–71 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hafliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73–73 (2011)Google Scholar
  6. 6.
    Y.V. Pershin, M. Di Ventra, Neuromorphic, digital, and quantum computation with memory circuit elements. Proc. IEEE 100, 2071–2080 (2012)CrossRefGoogle Scholar
  7. 7.
    G. Rachmuth, H.Z. Shouval, M.F. Bear, C.-S. Poon, A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proc. Natl. Acad. Sci. USA 108, E1266–E1274 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Guardiola, A. Diaz-Guilera, M. Llas, C.J. Perez, Synchronization, diversity, and topology of networks of integrate and fire oscillators. Phys. Rev. E 62, 5565–5570 (2000)CrossRefGoogle Scholar
  9. 9.
    Y. Moreno, A.F. Pacheco, Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett. 68, 603–609 (2004)CrossRefGoogle Scholar
  10. 10.
    H.Z. Shouval, M.F. Bear, L.N. Cooper, A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA 99, 10831–10836 (2002)CrossRefGoogle Scholar
  11. 11.
    L.O. Chua, Memristor – the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  12. 12.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  14. 14.
    R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)CrossRefGoogle Scholar
  16. 16.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Chang, Y. Yang, W. Lu, Building neuromorphic circuits with memristive devices. IEEE Circuits Syst. Mag. 13, 56–73 (2013)CrossRefGoogle Scholar
  18. 18.
    J.G. Simmons, R.R. Verderbe, New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. Lond. A Mater. 301, 77–102 (1967)CrossRefGoogle Scholar
  19. 19.
    S.H. Jo, K.H. Kim, W. Lu, High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009)CrossRefGoogle Scholar
  20. 20.
    S.H. Jo, K.H. Kim, W. Lu, Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9, 496–500 (2009)CrossRefGoogle Scholar
  21. 21.
    J.J. Yang, M.D. Pickett, X.M. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)CrossRefGoogle Scholar
  22. 22.
    L. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011)CrossRefGoogle Scholar
  23. 23.
    B. Govoreanu, G.S. Kar, Y.Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, M. Jurczak, 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. IEDM 729–732 (2011)Google Scholar
  24. 24.
    A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011)CrossRefGoogle Scholar
  25. 25.
    M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10, 625–630 (2011)CrossRefGoogle Scholar
  26. 26.
    D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)CrossRefGoogle Scholar
  27. 27.
    D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5, 1058–1063 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRefGoogle Scholar
  29. 29.
    F. Miao, J.P. Strachan, J.J. Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011)CrossRefMATHGoogle Scholar
  30. 30.
    J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L.D. Kilcoyne, G. Medeiros-Ribeiro, R.S. Williams, Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010)CrossRefGoogle Scholar
  31. 31.
    J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 21, 215201 (2010)CrossRefGoogle Scholar
  32. 32.
    D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 94, 515–519 (2009)CrossRefGoogle Scholar
  33. 33.
    J.J. Yang, J.P. Strachan, F. Miao, M.-X. Zhang, M.D. Pickett, W. Yi, D.A.A. Ohlberg, G. Medeiros-Ribeiro, R.S. Williams, Metal/TiO2 interfaces for memristive switches. Appl. Phys. A Mater. Sci. Process. 102, 785–789 (2011)CrossRefGoogle Scholar
  34. 34.
    J.J. Yang, J.P. Strachan, Q.F. Xia, D.A.A. Ohlberg, P.J. Kuekes, R.D. Kelley, W.F. Stickle, D.R. Stewart, G. Medeiros-Ribeiro, R.S. Williams, Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 22, 4034–4038 (2010)CrossRefGoogle Scholar
  35. 35.
    W.C. Chien, Y.C. Chen, E.K. Lai, F.M. Lee, Y.Y. Lin, A.T.H. Chuang, K.P. Chang, Y.D. Yao, T.H. Chou, H.M. Lin, M.H. Lee, Y.H. Shih, K.Y. Hsieh, C.-Y. Lu, A study of the switching mechanism and electrode material of fully CMOS compatible tungsten oxide ReRAM. Appl. Phys. A Mater. Sci. Process. 102, 901–907 (2011)CrossRefGoogle Scholar
  36. 36.
    T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, W. Lu, Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A Mater. Sci. Process. 102, 857–863 (2011)CrossRefGoogle Scholar
  37. 37.
    C. Ho, C.-L. Hsu, C.-C. Chen, J.-T. Liu, C.-S. Wu, C.-C. Huang, C. Hu, F.-L. Yang, 9 nm half-pitch functional resistive memory cell with <1 μA programming current using thermally oxidized sub-stoichiometric WOx film. IEDM 436–439 (2010)Google Scholar
  38. 38.
    T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Yang, P. Sheridan, W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012)CrossRefGoogle Scholar
  40. 40.
    K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Quantized conductance atomic switch. Nature 433, 47–50 (2005)CrossRefGoogle Scholar
  41. 41.
    T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J.K. Gimzewski, M. Aono, Learning abilities achieved by a single solid-state atomic switch. Adv. Mater. 22, 1831–1834 (2010)CrossRefGoogle Scholar
  42. 42.
    T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011)CrossRefGoogle Scholar
  43. 43.
    S.H. Jo, W. Lu, CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8, 392–397 (2008)CrossRefGoogle Scholar
  44. 44.
    K.H. Kim, S.H. Jo, S. Gaba, W. Lu, Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96, 053106 (2010)CrossRefGoogle Scholar
  45. 45.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  46. 46.
    M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  47. 47.
    D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.S.P. Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012)CrossRefGoogle Scholar
  48. 48.
    M.D. Pickett, R.S. Williams, Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012)CrossRefMATHGoogle Scholar
  49. 49.
    M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013)CrossRefGoogle Scholar
  50. 50.
    W. Lu, Memristors: going active. Nat. Mater. 12, 93–94 (2013)CrossRefGoogle Scholar
  51. 51.
    W.M. Cowan, T.C. Südhof, C.F. Stevens (eds.) Synapses (Johns Hopkins University Press, Baltimore, 2001)Google Scholar
  52. 52.
    P.J. Sjostrom, G.G. Turrigiano, S.B. Nelson, Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001)CrossRefGoogle Scholar
  53. 53.
    G.Q. Bi, M.M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)Google Scholar
  54. 54.
    R.C. Froemke, Y. Dan, Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–438 (2002)CrossRefGoogle Scholar
  55. 55.
    D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949)Google Scholar
  56. 56.
    K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K.P. Biju, J. Kong, K. Lee, B. Lee, H. Hwang, Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22, 254023 (2011)CrossRefGoogle Scholar
  57. 57.
    P. Krzysteczko, J. Muenchenberger, M. Schaefers, G. Reiss, A. Thomas, The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. Adv. Mater. 24, 762–766 (2012)CrossRefGoogle Scholar
  58. 58.
    Z.Q. Wang, H.Y. Xu, X.H. Li, H. Yu, Y.C. Liu, X.J. Zhu, Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 22, 2759–2765 (2012)CrossRefGoogle Scholar
  59. 59.
    S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.S.P. Wong, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011)CrossRefGoogle Scholar
  60. 60.
    G.S. Snider, Spike-timing-dependent learning in memristive nanodevices, in 2008 IEEE/ACM International Symposium on Nanoscale Architectures, Anaheim (2008), pp. 85–92Google Scholar
  61. 61.
    K.L. Magleby, Effect of repetitive stimulation on facilitation of transmitter release at frog neuromuscular junction. J. Physiol. Lond. 234, 327–352 (1973)Google Scholar
  62. 62.
    P.P. Atluri, W.G. Regehr, Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996)Google Scholar
  63. 63.
    F. Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant, K. Lmimouni, C. Gamrat, D. Vuillaume, An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20, 330–337 (2010)CrossRefGoogle Scholar
  64. 64.
    M. Tsodyks, K. Pawelzik, H. Markram, Neural networks with dynamic synapses. Neural Comput. 10, 821–835 (1998)CrossRefGoogle Scholar
  65. 65.
    R.M. Shiffrin, R.C. Atkinson, Storage and retrieval processes in long-term memory. Psychol. Rev. 76, 179–193 (1969)CrossRefGoogle Scholar
  66. 66.
    I. Pavlov, Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (translated by G. V. Anrep) (Oxford University Press, London, 1927)Google Scholar
  67. 67.
    Y.V. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  68. 68.
    M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, H. Kohlstedt, An electronic version of Pavlov’s dog. Adv. Funct. Mater. 22, 2744–2749 (2012)CrossRefGoogle Scholar
  69. 69.
    A.Z. Stieg, A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, M. Aono, J.K. Gimzewski, Emergent criticality in complex Turing B-type atomic switch networks. Adv. Mater. 24, 286–293 (2012)CrossRefGoogle Scholar
  70. 70.
    J. Hermiz, T. Chang, C. Du, W. Lu, Interference and memory capacity effects in memristive systems. Appl. Phys. Lett. 102, 083106 (2013)CrossRefGoogle Scholar
  71. 71.
    K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W. Lu, A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2012)CrossRefMATHGoogle Scholar
  72. 72.
    Q.F. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X.M. Li, W.M. Tong, D.B. Strukov, G.S. Snider, G. Medeiros-Ribeiro, R.S. Williams, Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009)CrossRefGoogle Scholar
  73. 73.
    D.B. Strukov, K.K. Likharev, CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)CrossRefGoogle Scholar
  74. 74.
    G.S. Snider, R.S. Williams, Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations