Memristor-Based Resistive Computing

  • Sung-Mo Steve Kang
  • Sangho Shin


This chapter reviews recent technology, circuits, and systems trends in memristive electronics, with particular attention to ultra-dense and energy-efficient resistive logic gates and signal processing. A reconfigurable nonvolatile computing platform that harnesses memristor properties is devised to deploy massive arrays of nanoscale resistive memory devices and advance their computing capabilities with much lowered energy consumption than the conventional charge-based VLSI systems. With application of memristive devices for stateful logic gates and multipliers, nonvolatile latches with high integration density and CMOS compatibility, combining the memristor technology with the prevailing CMOS technology pose. To prolong the Moore’s Law beyond the hitherto observed technological limitations.


Logic Gate Resistance Switching Resistive Random Access Memory Memristive Device Versus Close 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuits Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    D.B. Strukov et al., The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  4. 4.
    ERD/ERM Final Report, ITRS (2010)Google Scholar
  5. 5.
    M. Di Ventra, Y.V. Preshin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRefGoogle Scholar
  6. 6.
    D.B. Strukov, K.K. Likharev, CMOLFPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)CrossRefGoogle Scholar
  7. 7.
    G.S. Snider, R.S. Williams, Nano/CMOS architectures using a field programmable nanowire interconnect. Nanotechnology 18, 035204 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Shin, K. Kim, S.M. Kang, Memristor-based fine resolution resistance and its applications, in ICCCAS 2009 (2009), pp. 948–951Google Scholar
  9. 9.
    S. Shin, K. Kim, S.M. Kang, Memristor application to programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–270 (2011)CrossRefGoogle Scholar
  10. 10.
    D. Varghese, G. Gandhi, Memristor based high linear range differential pair, in ICCCAS 2009 (2009), pp. 935–938Google Scholar
  11. 11.
    Y.V. Pershin, M.D. Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I 57(8), 1857–1864 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Shin, K. Kim, S.M. Kang, Analysis of passive memristive devices array: data-dependent statistical model and self-adaptable sense resistance for RRAMs. Proc. IEEE 100(6), 2021–2032 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Mouttet, Proposal for memristors in signal processing. Nano-Net 2008, 11–13 (2009)CrossRefGoogle Scholar
  14. 14.
    S.H. Jo et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D.B. Strukov, R.S. Williams, Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl. Acad. Sci. USA 106(48), 20155–20158 (2009)CrossRefGoogle Scholar
  16. 16.
    P.J. Kuekes et al., The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits. J Appl. Phys. 97, 034301 (2005)CrossRefGoogle Scholar
  17. 17.
    P. Kuekes, Material implication: digital logic with memristors, in Memristor and Memristive Systems Symposium (November 21, 2008)Google Scholar
  18. 18.
    J. Borghetti et al., A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA 106(6), 1699–1703 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Borghetti et al., ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–875 (2010)CrossRefGoogle Scholar
  20. 20.
    K. Kim, S. Shin, S.M. Kang, Stateful logic pipeline architecture. IEEE Int. Symp. Circuits Syst. 2011, 2497–2500 (2011)Google Scholar
  21. 21.
    S. Shin, K. Kim, S.M. Kang, Reconfigurable stateful NOR gate for large-scale logic array integrations. IEEE Trans. Circuits Syst. II 58(7), 442–446 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Kim, S. Shin, S.M. Kang, Field programmable stateful logic array. IEEE Trans. Comput.-Aided Design 30(12), 1800–1813 (2011)CrossRefGoogle Scholar
  23. 23.
    S.M. Kang, S. Shin, Energy-efficient memristive analog and digital electronics. Adv. Neuromorphic Memristor Sci. Appl. Springer Ser. Cogn. Neural Syst. 4, 181–209 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Shin, K. Kim, S.M. Kang, Memristive XOR for resistive multiplier. Electron. Lett. 48(2), 78–80 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Shin, K. Kim, S.M. Kang, Memristive computing-multiplication and correlation. IEEE Int. Symp. Circuits Syst. 2012, 1608–1611 (2012)Google Scholar
  26. 26.
    S. Shin, K. Kim, S.M. Kang, Resistie Computing: Memristors-Enabled Signal Multiplication. IEEE Trans. Circ. Syst. I 60(5), 1241–1249 (2013)Google Scholar
  27. 27.
    G. Gill, J. Hansen, M. Singh, Loop pipelining for high-throughput stream computation using self-timed rings, in Proceedings of ICCAD (2006), pp. 289–296Google Scholar
  28. 28.
    J. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 2nd edn. (Morgan Kaufmann, San Mateo, 1996)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Jack Baskin School of EngineeringUniversity of CaliforniaSanta CruzUSA

Personalised recommendations