Skip to main content

Known Physiological and Anatomical Changes That Result from Optical and Motor Deficits

  • Chapter
  • First Online:
Visual Development
  • 2136 Accesses

Abstract

Mammals compensate for optical deficits occurring at a young age by anatomical and physiological changes in the visual cortex. Not much compensation is found at the level of the retina or the lateral geniculate nucleus. In the case of binocular function, orientation selectivity, and direction selectivity, this is what one would expect, because these are all properties of the visual cortex rather than of the retina or the lateral geniculate. The mechanisms that produce acuity and contrast sensitivity changes are also often found at the cortical level, even though acuity and contrast sensitivity are properties of the retina and lateral geniculate as well. The compensation is specific for the deficit. Monocular deprivation affects ocular dominance rather than orientation selectivity, and orientation deprivation affects orientation selectivity rather than ocular dominance. There is a rearrangement of the connections within the cortex, and the columns specific for the deprived features contract, while the columns specific for the non-deprived features expand. The physiological properties of the cells change correspondingly. There is a limit to how far compensation can occur through anatomical and physiological changes. This is not important for monocular, orientation, and direction deprivation, because columns for left and right eyes are near each other and so are columns for vertical and horizontal orientations and cells for rightward and leftward movement. It is, however, important for strabismus, when the angle of strabismus is large. In this case, compensation occurs through some form of physiological suppression rather than through anatomical rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonini A, Stryker MP (1996) Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. J Comp Neurol 369:64–82

    Article  PubMed  CAS  Google Scholar 

  • Antonini A, Gillespie DC, Crair MC, Stryker MP (1998) Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten. J Neurosci 18:9896–9909

    PubMed  CAS  Google Scholar 

  • Barnes GR, Hess RF, Dumoulin SO, Achtman RL, Pike GB (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol 533:281–297

    Article  PubMed  CAS  Google Scholar 

  • Baseler HA, Brewer AA, Sharpe LT, Morland AB, Jagle H, Wandell BA (2002) Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nat Neurosci 5:364–370

    Article  PubMed  CAS  Google Scholar 

  • Baseler HA, Gouws A, Haak KV, Racey C, Crossland MD, Tufail A, Rubin GS, Cornelissen FW, Morland AB (2011) Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat Neurosci 14:649–655

    Article  PubMed  CAS  Google Scholar 

  • Bi H, Zhang B, Tao X, Harwerth RS, Smith EL 3rd, Chino YM (2011) Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cereb Cortex 21:2033–2045

    Article  PubMed  CAS  Google Scholar 

  • Birch EE, Fawcett S, Stager DR (2000) Why does early surgical alignment improve stereoacuity outcomes in infantile esotropia? J AAPOS 4:10–14

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C, Cooper GF (1970) Development of the brain depends on the visual environment. Nature 228:477–478

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C, Van Sluyters RC (1974) Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J Physiol 237:195–216

    PubMed  CAS  Google Scholar 

  • Bui Quoc E, Ribot J, Quenech'du N, Doutremer S, Lebas N, Grantyn A, Aushana Y, Milleret C (2011) Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: anatomy, physiology, and mechanisms. Front Neuroanat 5:68

    PubMed  Google Scholar 

  • Burton H (2003) Visual cortex activity in early and late blind people. J Neurosci 23:4005–4011

    PubMed  CAS  Google Scholar 

  • Chino YM, Cheng H, Smith EL, Garraghty PE, Roe AW, Sur M (1994) Early discordant binocular vision disrupts signal transfer in the lateral geniculate nucleus. Proc Natl Acad Sci U S A 91:6938–6942

    Article  PubMed  CAS  Google Scholar 

  • Coleman JE, Nahmani M, Gavornik JP, Haslinger R, Heynen AJ, Erisir A, Bear MF (2010) Rapid structural remodeling of thalamocortical synapses parallels experience-dependent functional plasticity in mouse primary visual cortex. J Neurosci 30:9670–9682

    Article  PubMed  CAS  Google Scholar 

  • Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J Neurophysiol 77:3381–3385

    PubMed  CAS  Google Scholar 

  • Crawford MJ, Pesch TW, Von Noorden GK, Harwerth RS, Smith EL (1991) Bilateral form deprivation in monkeys: electrophysiologic and anatomic consequences. Investig Ophthalmol 32:2328–2336

    CAS  Google Scholar 

  • Crewther DP, Crewther SG (1990) Neural site of strabismic amblyopia in cats: spatial frequency deficit in primary cortical neurons. Exp Brain Res 79:615–622

    Article  PubMed  CAS  Google Scholar 

  • Crewther SG, Crewther DP, Cleland BG (1985) Convergent strabismic amblyopia in cats. Exp Brain Res 60:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cynader M, Berman N, Hein A (1975) Cats raised in a one-directional world: effects on receptive fields in visual cortex and superior colliculus. Exp Brain Res 22:267–280

    Article  PubMed  CAS  Google Scholar 

  • Cynader MS, Gardner JP, Mustari MJ (1984) Effects of neonatally induced strabismus on binocular responses in cat area 18. Exp Brain Res 53:384–399

    Article  PubMed  CAS  Google Scholar 

  • Daw NW (1962) Why after-images are not seen in normal circumstances. Nature 196:1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Daw NW, Wyatt HJ (1976) Kittens reared in a unidirectional environment: evidence for a critical period. J Physiol 257:155–170

    PubMed  CAS  Google Scholar 

  • Daw NW, Fox KD, Sato H, Czepita D (1992) Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol 67:197–202

    PubMed  CAS  Google Scholar 

  • Dews PD, Wiesel TN (1970) Consequences of monocular deprivation on visual behaviour in kittens. J Physiol 206:437–455

    PubMed  CAS  Google Scholar 

  • Distler C, Hoffmann KP (1991) Depth perception and cortical physiology in normal and innate microstrabismic cats. Vis Neurosci 6:25–41

    Article  PubMed  CAS  Google Scholar 

  • Eggers HM, Blakemore C (1978) Physiological basis of anisometropic amblyopia. Science 201:264–266

    Article  PubMed  CAS  Google Scholar 

  • El-Shamayleh Y, Kiorpes L, Kohn A, Movshon JA (2010) Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. J Neurosci 30:12198–12209

    Article  PubMed  CAS  Google Scholar 

  • Farley BJ, Yu H, Jin DZ, Sur M (2007) Alteration of visual input results in a coordinated reorganization of multiple visual cortex maps. J Neurosci 27:10299–10310

    Article  PubMed  CAS  Google Scholar 

  • Fenstemaker SB, Kiorpes L, Movshon JA (2001) Effects of experimental strabismus on the architecture of macaque monkey striate cortex. J Comp Neurol 438:300–317

    Article  PubMed  CAS  Google Scholar 

  • Freeman RD, Tsumoto T (1983) An electrophysiological comparison of convergent and divergent strabismus in the cat: electrical and visual activation of single cortical cells. J Neurophysiol 49:238–253

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150–152

    Article  PubMed  CAS  Google Scholar 

  • Grant S, Berman NJ (1991) Mechanism of anomalous retinal correspondence: maintenance of binocularity with alteration of receptive-field position in the lateral suprasylvian (LS) visual area of strabismic cats. Vis Neurosci 7:259–281

    Article  PubMed  CAS  Google Scholar 

  • Held R, Ostrovsky Y, de Gelder B, Gandhi T, Ganesh S, Mathur U, Sinha P (2011) The newly sighted fail to match seen with felt. Nat Neurosci 14:551–553

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson AE, Wilson JR, Ogren MP (1978) The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J Comp Neurol 182:123–136

    Article  PubMed  CAS  Google Scholar 

  • Hirsch HB, Spinelli DN (1970) Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168:869–871

    Article  PubMed  CAS  Google Scholar 

  • Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosci 17:3684–3709

    PubMed  CAS  Google Scholar 

  • Horton JC, Hocking DR, Adams DL (1999) Metabolic mapping of suppression scotomas in striate cortex of macaques with experimental strabismus. J Neurosci 19:7111–7129

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041–1059

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Wright MJ (1976) Properties of LGN cells in kittens reared with convergent squint: a neurophysiological demonstration of amblyopia. Exp Brain Res 25:63–77

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248:229–231

    Article  PubMed  CAS  Google Scholar 

  • Kalil RE, Spear PD, Langsetmo A (1984) Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus. J Neurophysiol 52:514–537

    PubMed  CAS  Google Scholar 

  • Keck T, Mrsic-Flogel TD, Vaz Afonso M, Eysel UT, Bonhoeffer T, Hubener M (2008) Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11:1162–1167

    Article  PubMed  CAS  Google Scholar 

  • Kiorpes L, Boothe RG (1981) Naturally occurring strabismus in monkeys (Macaca nemestrina). Investig Ophthalmol 20:257–263

    CAS  Google Scholar 

  • Kiorpes L, Kiper DC, O'Keefe LP, Cavanaugh JR, Movshon JA (1998) Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. J Neurosci 18:6411–6424

    PubMed  CAS  Google Scholar 

  • Kreile AK, Bonhoeffer T, Hubener M (2011) Altered visual experience induces instructive changes of orientation preference in mouse visual cortex. J Neurosci 31:13911–13920

    Article  PubMed  CAS  Google Scholar 

  • Lerner Y, Pianka P, Azmon B, Leiba H, Stolovitch C, Loewenstein A, Harel M, Hendler T, Malach R (2003) Area-specific amblyopic occipitotemporal object effects in human representations. Neuron 40:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Van Hooser SD, Mazurek M, White LE, Fitzpatrick D (2008) Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456:952–956

    Article  PubMed  CAS  Google Scholar 

  • Lowel S, Schmidt KE, Kim DS, Wolf W, Hoffsummer F, Singer W, Bonhoeffer T (1998) The layout of orientation and ocular dominance domains in area 17 of strabismic cats. Eur J Neurosci 10:2629–2643

    Article  PubMed  CAS  Google Scholar 

  • Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11:44–52

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DE, MacKinnon S (2002) The present and potential impact of research on animal models for clinical treatment of stimulus deprivation amblyopia. Clin Exp Optom 85:5–18

    Article  PubMed  Google Scholar 

  • Mitchell DM, Ptito M, Lepore F (1994) Depth perception in monocularly deprived cats following part-time reverse occlusion. Eur J Neurosci 6:967–972

    Article  PubMed  CAS  Google Scholar 

  • Movshon JA (1976) Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex. J Physiol 261:125–174

    PubMed  CAS  Google Scholar 

  • Movshon JA, Eggers HM, Gizzi MS, Hendrickson AE, Kiorpes L (1987) Effects of early unilateral blur on the macaque's visual system III. Physiological observations. J Neurosci 7:1340–1351

    PubMed  CAS  Google Scholar 

  • Mower GD, Caplan CJ, Christen WG, Duffy FH (1985) Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. J Comp Neurol 235:448–466

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema PR, Konig P, Engel AK, Sireteanu R, Singer W (1994) Reduced synchronization in the visual cortex of cats with strabismic amblyopia. Eur J Neurosci 6:1645–1655

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KE, Singer W, Galuske RW (2004) Processing deficits in primary visual cortex of amblyopic cats. J Neurophysiol 91:1661–1671

    Article  PubMed  Google Scholar 

  • Schroder JH, Fries P, Roelfsema PR, Singer W, Engel AK (2002) Ocular dominance in extrastriate cortex of strabismic amblyopic cats. Vis Res 42:29–39

    Article  PubMed  Google Scholar 

  • Sengpiel F, Blakemore C (1994) Interocular control of neuronal responsiveness in cat visual cortex. Nature 368:847–850

    Article  PubMed  CAS  Google Scholar 

  • Sengpiel F, Stawinski P, Bonhoeffer T (1999) Influence of experience on orientation maps in cat visual cortex. Nat Neurosci 2:727–732

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ, Stryker MP (1978) Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J Physiol 281:267–283

    PubMed  CAS  Google Scholar 

  • Sherman SM (1985) Development of retinal projections to the cat's lateral geniculate nucleus. Trends Neurosci 8:350–355

    Article  Google Scholar 

  • Sherman SM, Stone J (1973) Physiological normality of the retina in visually deprived cats. Brain Res 60:224–230

    Article  PubMed  CAS  Google Scholar 

  • Silver MA, Stryker MP (1999) Synaptic density in geniculocortical afferents remains constant after monocular deprivation in cat. J Neurosci 19:10829–10842

    PubMed  CAS  Google Scholar 

  • Sincich LC, Jocson CM, Horton JC (2012) Neuronal projections from V1 to V2 in amblyopia. J Neurosci 32:2648–2656

    Article  PubMed  CAS  Google Scholar 

  • Singer W, Rauschecker JP, Von Grunau MW (1979) Squint affects striate cortex cells encoding horizontal image movements. Brain Res 170:182–186

    Article  PubMed  CAS  Google Scholar 

  • Singer W, Von Grunau MW, Rauschecker JP (1980) Functional amblyopia in kittens with unilateral exotropia I. Electrophysiological assessment. Exp Brain Res 40:294–304

    Article  PubMed  CAS  Google Scholar 

  • Sireteanu R, Best J (1992) Squint-induced modification of visual receptive fields in the lateral suprasylvian cortex of the cat: binocular interaction, vertical effect and anomalous correspondence. Eur J Neurosci 4:235–242

    Article  PubMed  Google Scholar 

  • Smith SL, Trachtenberg JT (2007) Experience-dependent binocular competition in the visual cortex begins at eye opening. Nat Neurosci 10:370–375

    Article  PubMed  CAS  Google Scholar 

  • Smith EL, Harwerth RS, Crawford MJ (1985) Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia. Investig Ophthalmol 26:330–342

    Google Scholar 

  • Smith EL, Chino YM, Ni J, Cheng H, Crawford MJ, Harwerth RS (1997) Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. J Neurophysiol 78:1353–1362

    PubMed  Google Scholar 

  • Spear PD, Tong L, Langsetmo A (1978) Striate cortex neurons of binocularly deprived kittens respond to visual stimuli through the closed eyelids. Brain Res 155:141–146

    Article  PubMed  CAS  Google Scholar 

  • Sur M, Humphrey AH, Sherman SM (1982) Monocular deprivation affects X- and Y-cell terminations in cats. Nature 300:183–185

    Article  PubMed  CAS  Google Scholar 

  • Tieman SB (1984) Effects of monocular deprivation on geniculocortical synapses in the cat. J Comp Neurol 222:166–176

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg JT, Stryker MP (2001) Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J Neurosci 21:3476–3482

    PubMed  CAS  Google Scholar 

  • Trachtenberg JT, Trepel C, Stryker MP (2000) Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287:2029–2031

    Article  PubMed  CAS  Google Scholar 

  • Tumosa N, Tieman SB, Tieman DG (1989) Binocular competition affects the pattern and intensity of ocular activation columns in the visual cortex of cats. Vis Neurosci 2:391–407

    Article  PubMed  CAS  Google Scholar 

  • Tychsen L, Wong AMF, Burkhalter A (2004) Paucity of horizontal connections for binocular vision in V1 of naturally strabismic macaques: cytochrome oxidase compartment specificity. J Comp Neurol 474:261–275

    Article  PubMed  Google Scholar 

  • Van Hooser SD, Li Y, Christensson M, Smith GB, White LE, Fitzpatrick D (2012) Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex. J Neurosci 32:7258–7266

    Article  PubMed  Google Scholar 

  • Von Grunau MW, Singer W (1980) Functional amblyopia in kittens with unilateral exotropia II. Correspondence between behavioural and electrophysiological assessment. Exp Brain Res 40:305–310

    Article  Google Scholar 

  • Von Noorden GK, Dowling JE, Ferguson DC (1970) Experimental amblyopia in monkeys. Arch Ophthalmol 84:206–214

    Article  Google Scholar 

  • Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature 299:583–591

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1963a) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1963b) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J Neurophysiol 26:978–993

    PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28:1029–1040

    PubMed  CAS  Google Scholar 

  • Wong AMF, Lueder GT, Burkhalter A, Tychsen L (2000) Anomalous retinal correspondence: neuroanatomic mechanism in strabismic monkeys and clinical findings in strabismic children. J AAPOS 4:168–174

    PubMed  CAS  Google Scholar 

  • Yamahachi H, Marik SA, McManus JN, Denk W, Gilbert CD (2009) Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex. Neuron 64:719–729

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daw, N.W. (2014). Known Physiological and Anatomical Changes That Result from Optical and Motor Deficits. In: Visual Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9059-3_7

Download citation

Publish with us

Policies and ethics