Next-Generation–Sequencing-Based Noninvasive Prenatal Diagnosis

  • C. Alexander Valencia
  • M. Ali Pervaiz
  • Ammar Husami
  • Yaping Qian
  • Kejian Zhang
Chapter
Part of the SpringerBriefs in Genetics book series (BRIEFSGENETICS)

Abstract

Prenatal diagnosis is important part of obstetric practice (Tounta et al. 2011). Traditionally, fetal DNA is obtained by invasive techniques, namely, amniocentesis and chorionic villus sampling. Such invasive procedure leads to a miscarriage rate of about 1 % and is reserved only for high risk pregnancies for specific genetic conditions which include fetal chromosomal aneuploidies and monogenic disorders with relatively high prevalence in the relevant populations. The ultimate goal for early prenatal diagnosis, while decreasing the miscarriage rate, is to employ noninvasive testing using maternal peripheral blood as a source of fetal genetic material (Tounta et al. 2011). Multiple studies indicate that both intact fetal cells and cell-free fetal nucleic acids (cffNA) cross the placenta and can be found in the maternal circulation. Intact fetal cells present an attractive target for noninvasive prenatal diagnosis (NIPD) of fetal chromosomal abnormalities (Lo et al. 1996). Isolation and analysis of fetal cells from maternal circulation have been extensively investigated and several methods for fetal cell enrichment have been developed (Bianchi 1999; Jackson 2003; Sekizawa et al. 2007). However, due to the lack of cells in the maternal circulation and low efficiency of enrichment methods results have not been promising. In addition, it has been challenging to perform Fluorescent In Situ Hybridization (FISH) because of the presence of apoptotic nuclei of fetal cells (Bianchi et al. 1997).

Keywords

Formaldehyde Milo 

References

  1. Avent ND, Chitty LS (2006) Non-invasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn 26:598–603. doi: 10.1002/pd.1493 PubMedCrossRefGoogle Scholar
  2. Avent ND, Madgett TE, Maddocks DG, Soothill PW (2009) Cell-free fetal DNA in the maternal serum and plasma: current and evolving applications. Curr Opin Obstet Gynecol 21:175–179. doi: 10.1097/GCO.0b013e3283294798 PubMedCrossRefGoogle Scholar
  3. Bianchi DW (1999) Fetal cells in the maternal circulation: feasibility for prenatal diagnosis. Br J Haematol 105:574–583PubMedCrossRefGoogle Scholar
  4. Bianchi DW, Williams JM, Sullivan LM et al (1997) PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet 61:822–829. doi: 10.1086/514885 PubMedCrossRefGoogle Scholar
  5. Bianchi DW, Avent ND, Costa J-M, van der Schoot CE (2005) Noninvasive prenatal diagnosis of fetal Rhesus D: ready for Prime(r) Time. Obstet Gynecol 106:841–844. doi: 10.1097/01.AOG.0000179477.59385.93 PubMedCrossRefGoogle Scholar
  6. Bustamante-Aragones A, Gallego-Merlo J, Trujillo-Tiebas MJ et al (2008) New strategy for the prenatal detection/exclusion of paternal cystic fibrosis mutations in maternal plasma. J Cyst Fibros 7:505–510. doi: 10.1016/j.jcf.2008.05.006 PubMedCrossRefGoogle Scholar
  7. Canick JA, Palomaki GE, Kloza EM et al (2013) The impact of maternal plasma DNA fetal fraction on next-generation sequencing tests for common fetal aneuploidies. Prenat Diagn 33(7):667–674. doi: 10.1002/pd.4126 PubMedCrossRefGoogle Scholar
  8. Chan KCA, Zhang J, Hui ABY et al (2004) Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 50:88–92. doi: 10.1373/clinchem.2003.024893 PubMedCrossRefGoogle Scholar
  9. Chen EZ, Chiu RWK, Sun H et al (2011) Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing. PLoS One 6:e21791. doi: 10.1371/journal.pone.0021791 PubMedCrossRefGoogle Scholar
  10. Chiu RWK, Lau TK, Cheung PT et al (2002a) Noninvasive prenatal exclusion of congenital adrenal hyperplasia by maternal plasma analysis: a feasibility study. Clin Chem 48:778–780PubMedGoogle Scholar
  11. Chiu RWK, Lau TK, Leung TN et al (2002b) Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet 360:998–1000PubMedCrossRefGoogle Scholar
  12. Chiu RWK, Chan KCA, Gao Y et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A 105:20458–20463. doi: 10.1073/pnas.0810641105 PubMedCrossRefGoogle Scholar
  13. Chiu RWK, Sun H, Akolekar R et al (2010) Maternal plasma DNA analysis with massively parallel sequencing by ligation for noninvasive prenatal diagnosis of trisomy 21. Clin Chem 56:459–463. doi: 10.1373/clinchem.2009.136507 PubMedCrossRefGoogle Scholar
  14. Chiu RWK, Akolekar R, Zheng YWL et al (2011) Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 342:c7401PubMedCrossRefGoogle Scholar
  15. Dhallan R, Au W-C, Mattagajasingh S et al (2004) Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA 291:1114–1119. doi: 10.1001/jama.291.9.1114 PubMedCrossRefGoogle Scholar
  16. Ding C, Chiu RWK, Lau TK et al (2004) MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis. Proc Natl Acad Sci U S A 101:10762–10767. doi: 10.1073/pnas.0403962101 PubMedCrossRefGoogle Scholar
  17. Driscoll DA, Gross SJ, Professional Practice Guidelines Committee (2009) Screening for fetal aneuploidy and neural tube defects. Genet Med 11:818–821. doi: 10.1097/GIM.0b013e3181bb267b PubMedCrossRefGoogle Scholar
  18. Ehrich M, Deciu C, Zwiefelhofer T et al (2011) Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol 204:205.e1–11. doi: 10.1016/j.ajog.2010.12.060 PubMedCrossRefGoogle Scholar
  19. Fan HC, Blumenfeld YJ, Chitkara U et al (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A 105:16266–16271. doi: 10.1073/pnas.0808319105 PubMedCrossRefGoogle Scholar
  20. Hahn S, Lapaire O, Tercanli S et al (2011) Determination of fetal chromosome aberrations from fetal DNA in maternal blood: has the challenge finally been met? Expert Rev Mol Med 13:e16. doi: 10.1017/S1462399411001852 PubMedCrossRefGoogle Scholar
  21. Jackson L (2003) Fetal cells and DNA in maternal blood. Prenat Diagn 23:837–846. doi: 10.1002/pd.705 PubMedCrossRefGoogle Scholar
  22. Li Y, Page-Christiaens GCML, Gille JJP et al (2007) Non-invasive prenatal detection of achondroplasia in size-fractionated cell-free DNA by MALDI-TOF MS assay. Prenat Diagn 27:11–17. doi: 10.1002/pd.1608 PubMedCrossRefGoogle Scholar
  23. Liao GJW, Lun FMF, Zheng YWL et al (2011) Targeted massively parallel sequencing of maternal plasma DNA permits efficient and unbiased detection of fetal alleles. Clin Chem 57:92–101. doi: 10.1373/clinchem.2010.154336 PubMedCrossRefGoogle Scholar
  24. Lo YM, Lo ES, Watson N et al (1996) Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood 88:4390–4395PubMedGoogle Scholar
  25. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487. doi: 10.1016/S0140-6736(97)02174-0 PubMedCrossRefGoogle Scholar
  26. Lo YMD, Tsui NBY, Chiu RWK et al (2007) Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med 13:218–223. doi: 10.1038/nm1530 PubMedCrossRefGoogle Scholar
  27. Milos PM (2009) Emergence of single-molecule sequencing and potential for molecular diagnostic applications. Expert Rev Mol Diagn 9:659–666. doi: 10.1586/erm.09.50 PubMedCrossRefGoogle Scholar
  28. Minon J-M, Gerard C, Senterre J-M et al (2008) Routine fetal RHD genotyping with maternal plasma: a four-year experience in Belgium. Transfusion 48:373–381. doi: 10.1111/j.1537-2995.2007.01533.x PubMedGoogle Scholar
  29. Noninvasive Prenatal Screening Work Group of the American College of Medical Genetics and Genomics, Gregg AR, Gross SJ et al (2013) ACMG statement on noninvasive prenatal screening for fetal aneuploidy. Genet Med 15:395–398. doi: 10.1038/gim.2013.29 PubMedCrossRefGoogle Scholar
  30. Palomaki GE, Kloza EM, Lambert-Messerlian GM et al (2011) DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 13:913–920. doi: 10.1097/GIM.0b013e3182368a0e PubMedCrossRefGoogle Scholar
  31. Saito H, Sekizawa A, Morimoto T et al (2000) Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet 356:1170. doi: 10.1016/S0140-6736(00)02767-7 PubMedCrossRefGoogle Scholar
  32. Sekizawa A, Purwosunu Y, Farina A et al (2007) Development of noninvasive fetal DNA diagnosis from nucleated erythrocytes circulating in maternal blood. Prenat Diagn 27:846–848. doi: 10.1002/pd.1792 PubMedCrossRefGoogle Scholar
  33. Stumm M, Entezami M, Trunk N et al (2012) Noninvasive prenatal detection of chromosomal aneuploidies using different next-generation sequencing strategies and algorithms. Prenat Diagn 32:569–577. doi: 10.1002/pd.3862 PubMedCrossRefGoogle Scholar
  34. Tounta G, Kolialexi A, Papantoniou N et al (2011) Non-invasive prenatal diagnosis using cell-free fetal nucleic acids in maternal plasma: progress overview beyond predictive and personalized diagnosis. EPMA J 2:163–171. doi: 10.1007/s13167-011-0085-y PubMedCrossRefGoogle Scholar
  35. Van den Oever JME, Balkassmi S, Verweij EJ et al (2012) Single molecule sequencing of free DNA from maternal plasma for noninvasive trisomy 21 detection. Clin Chem 58:699–706. doi: 10.1373/clinchem.2011.174698 PubMedCrossRefGoogle Scholar
  36. Van der Schoot CE, Tax GHM, Rijnders RJP et al (2003) Prenatal typing of Rh and Kell blood group system antigens: the edge of a watershed. Transfus Med Rev 17:31–44. doi: 10.1053/tmrv.2003.50001 PubMedCrossRefGoogle Scholar
  37. Wapner R, Thom E, Simpson JL et al (2003) First-trimester screening for trisomies 21 and 18. N Engl J Med 349:1405–1413. doi: 10.1056/NEJMoa025273 PubMedCrossRefGoogle Scholar

Copyright information

© C. Alexander Valencia 2013

Authors and Affiliations

  • C. Alexander Valencia
    • 1
  • M. Ali Pervaiz
    • 2
  • Ammar Husami
    • 1
  • Yaping Qian
    • 1
  • Kejian Zhang
    • 1
  1. 1.Division of Human GeneticsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.WellStar Douglas HospitalWellStar Health SystemDouglasvilleUSA

Personalised recommendations