Short Bowel Syndrome

  • Ilun Yang
  • Robin P. Boushey


Patients with short bowel syndrome, particularly those who are dependent on long-term parenteral nutrition, face serious clinical sequelae that can dramatically impact their quality of life and survival. Over the last few decades, innovations and refinements in nutritional, pharmacologic, and surgical therapies have improved outcomes significantly. An individualized and multidisciplinary management approach is mandatory, and this should ideally take place in specialized centers with the necessary expertise and resources to address these patients’ complex physical and psychosocial issues.


Parenteral Nutrition Short Bowel Syndrome Mesenteric Ischemia Intestinal Transplantation Intestinal Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buchman A, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124:1111–34.PubMedGoogle Scholar
  2. 2.
    Jeejeebhoy KN. Management of short bowel syndrome: avoidance of total parenteral nutrition. Gastroenterology. 2006;130(2 Suppl 1):S60–6.PubMedGoogle Scholar
  3. 3.
    Buchman AL. Etiology and initial management of short bowel syndrome. Gastroenterology. 2006;130(2 Suppl 1):S5–15.PubMedGoogle Scholar
  4. 4.
    Westergaard H. Short bowel syndrome. Semin Gastrointest Dis. 2002;13(4):210–20.PubMedGoogle Scholar
  5. 5.
    Nightingale J, Woodward JM. Guidelines for management of patients with a short bowel. Gut. 2006;55 Suppl 4:iv1–12.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Longshore S, Wakeman D, McMellen M, Warner B. Bowel resection induced intestinal adaptation: progress from bench to bedside. Minerva Pediatr. 2009;61(3):239–51.PubMedGoogle Scholar
  7. 7.
    Jeejeebhoy KN. Short bowel syndrome: a nutritional and medical approach. CMAJ. 2002;166(10):1297–302.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Thompson W, Wrathell E. The relation between ileal resection and vitamin B12 absorption. Can J Surg. 1977;20(5):461.PubMedGoogle Scholar
  9. 9.
    Hofmann AF. Bile acid malabsorption caused by ileal resection. Arch Intern Med. 1972;130(4):597–605.PubMedGoogle Scholar
  10. 10.
    Lin H, Zhao X, Wang L. Intestinal transit is more potently inhibited by fat in the distal (ileal brake) than in the proximal (jejunal brake) gut. Dig Dis Sci. 1997;42(1):19–25.PubMedGoogle Scholar
  11. 11.
    Stanley S, Wynne K, Bloom S. Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am J Physiol Gastrointest Liver Physiol. 2004;286:G693–7.PubMedGoogle Scholar
  12. 12.
    Nightingale J, Kamm M, van der Sijp J, Ghatei M, Bloom S, Lennard-Jones J. Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the “colonic brake” to gastric emptying. Gut. 1996;39:267–72.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Fordtran J, Rector F, Carter N. The mechanisms of sodium absorption in the human small intestine. J Clin Invest. 1968;47(4):884–900.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Davis G, Santa Ana C, Morawski S, Fordtran J. Permeability characteristics of human jejunum, ileum, proximal colon and distal colon: results of potential difference measurements and unidirectional fluxes. Gastroenterology. 1982;83(4):844–50.PubMedGoogle Scholar
  15. 15.
    Chaet M, Farrell M, Ziegler M, Warner B. Intensive nutritional support and remedial surgical intervention for extreme short bowel syndrome. J Pediatr Gastroenterol Nutr. 1994;19(3):295–8.PubMedGoogle Scholar
  16. 16.
    Sondheimer J, Cadnapaphornchai M, Sontag M, Zerbe G. Predicting the duration of dependence on parenteral nutrition after neonatal intestinal resection. J Pediatr. 1998;132:80–4.PubMedGoogle Scholar
  17. 17.
    Andorsky D, Lund D, Lillehei C, Jaksic T, DiCanzio J, Richardson D, et al. Nutritional and other postoperative management of neonates with short bowel syndrome correlates with clinical outcomes. J Pediatr. 2001;139:27–33.PubMedGoogle Scholar
  18. 18.
    Dibaise JK, Young RJ, Vanderhoof JA. Enteric microbial flora, bacterial overgrowth, and short-bowel syndrome. Clin Gastroenterol Hepatology. 2006;4(1):11–20.Google Scholar
  19. 19.
    Vanderhoof J, Young R, Murray N, Kaufman S. Treatment strategies for small bowel bacterial overgrowth in short bowel syndrome. J Pediatr Gastroenterol Nutr. 1998;27(2):155–60.PubMedGoogle Scholar
  20. 20.
    Kaufman S, Loseke C, Lupo J, Young R, Murray N, Pinch L, et al. Influence of bacterial overgrowth and intestinal inflammation on duration of parenteral nutrition in children with short bowel syndrome. J Pediatr. 1997;131:356–61.PubMedGoogle Scholar
  21. 21.
    Fich A, Steadman C, Phillips S, Camilleri M, Brown M, Haddad A, et al. Ileocolonic transit does not change after right hemicolectomy. Gastroenterology. 1992;103(3):794–9.PubMedGoogle Scholar
  22. 22.
    Fry R, Mahmoud N, Maron D, Ross H, Rombeau J. Colon and rectum. In: Townsend C, Beauchamp R, Evers B, Mattox K, editors. Sabiston textbook of surgery. 18th ed. Philadelphia: Saunders, Elsevier; 2007.Google Scholar
  23. 23.
    Joly F, Mayeur C, Messing B, Lavergne-Slove A, Cazals-Hatem D, Noordine M-L, et al. Morphological adaptation with preserved proliferation/transporter content in the colon of patients with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2009;297(1):G116–23.PubMedGoogle Scholar
  24. 24.
    Royall D, Wolever T, Jeejeebhoy K. Evidence for colonic conservation of malabsorbed carbohydrate in short bowel syndrome. Am J Gastroenterol. 1992;87(6):751–6.PubMedGoogle Scholar
  25. 25.
    Gouttebel MC, Saint-Aubert B, Astre C, Joyeux H. Total parenteral nutrition needs in different types of short bowel syndrome. Dig Dis Sci. 1986;31(7):718–23.PubMedGoogle Scholar
  26. 26.
    Nightingale JM, Lennard-Jones JE, Gertner DJ, Wood SR, Bartram CI. Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut. 1992;33(11):1493–7.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Mitchell JE, Breuer RI, Zuckerman L, Berlin J, Schilli R, Dunn JK. The colon influences ileal resection diarrhea. Dig Dis Sci. 1980;25(1):33–41.PubMedGoogle Scholar
  28. 28.
    Thompson J. Short bowel syndrome and Crohn’s disease. J Gastrointest Surg. 2003;7(8):1069–72.PubMedGoogle Scholar
  29. 29.
    Polito J, Childs B, Mellits E, Tokayer A, Harris M, Bayless T. Crohn’s disease: influence of age at diagnosis and site and clinical type of disease. Gastroenterology. 1996;111(3):580–6.PubMedGoogle Scholar
  30. 30.
    Agwunobi A, Carlson G, Anderson I, Irving M, Scott N. Mechanisms of intestinal failure in Crohn’s disease. Dis Colon Rectum. 2001;44(12):1834–7.PubMedGoogle Scholar
  31. 31.
    Donohoe CL, Reynolds JV. Short bowel syndrome. Surgeon. 2010;8(5):270–9. Elsevier Ltd.PubMedGoogle Scholar
  32. 32.
    Kotanagi H, Kramer K, Fazio VW, Petras RE. Do microscopic abnormalities at resection margins correlate with increased anastomotic recurrence in Crohn’s disease? Retrospective analysis of 100 cases. Dis Colon Rectum. 1991;34(10):909–16.PubMedGoogle Scholar
  33. 33.
    Yamamoto T, Fazio VW, Tekkis PP. Safety and efficacy of strictureplasty for Crohn’s disease: a systematic review and meta-analysis. Dis Colon Rectum. 2007;50(11):1968–86.PubMedGoogle Scholar
  34. 34.
    Thompson JS. Comparison of massive vs. repeated resection leading to short bowel syndrome. J Gastrointest Surg. 2000;4(1):101–4.PubMedGoogle Scholar
  35. 35.
    Falkensammer J, Oldenburg WA. Surgical and medical management of mesenteric ischemia. Curr Treat Options Cardiovasc Med. 2006;8:137–43.PubMedGoogle Scholar
  36. 36.
    Sise MJ. Mesenteric ischemia: the whole spectrum. Scand J Surg. 2010;99(2):106–10.PubMedGoogle Scholar
  37. 37.
    Ballard JL, Stone WM, Hallett JW, Pairolero PC, Cherry KJ. A critical analysis of adjuvant techniques used to assess bowel viability in acute mesenteric ischemia. Am Surg. 1993;59(5):309–11.PubMedGoogle Scholar
  38. 38.
    Thompson JS. Inflammatory disease and outcome of short bowel syndrome. Am J Surg. 2000;180(6):551–5.PubMedGoogle Scholar
  39. 39.
    Messing B, Crenn P, Beau P, Christine M, Ruault B, Rambaud JC, et al. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology. 1999;117:1043–50.PubMedGoogle Scholar
  40. 40.
    Boland E, Thompson J, Rochling F, Sudan D. A 25-year experience with postresection short-bowel syndrome secondary to radiation therapy. Am J Surg. 2010;200:690–3. Elsevier Inc.PubMedGoogle Scholar
  41. 41.
    Dietz D, Remzi F, Fazio V. Strictureplasty for obstructing small-bowel lesions in diffuse radiation enteritis-successful outcome in five patients. Dis Colon Rectum. 2001;44(12):1772–7.PubMedGoogle Scholar
  42. 42.
    Girvent M, Carlson GL, Shaffer J, Irving M, Scott NA. Intestinal failure after surgery for complicated radiation enteritis. Ann R Coll Surg Engl. 2000;82:198–201.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Marshall GT, Thirlby RC, Bredfeldt JE, Hampson NB. Treatment of gastrointestinal radiation injury with hyperbaric oxygen. Undersea Hyperb Med. 2007;34:35–42.PubMedGoogle Scholar
  44. 44.
    Yokoyama K, Ogura Y, Kawabata M, Hinoshita F, Suzuki Y, Hara S, et al. Hyperammonemia in a patient with short bowel syndrome and chronic renal failure. Nephron. 1996;72:693–5.PubMedGoogle Scholar
  45. 45.
    Mayne A, Handy D, Preece M, George R, Booth I. Dietary management of D-lactic acidosis in short bowel syndrome. Arch Dis Child. 1990;65:229–31.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Dray X, Joly F, Reijasse D, Attar A, Alves A, Panis Y, et al. Incidence, risk factors, and complications of cholelithiasis in patients with home parenteral nutrition. J Am Coll Surg. 2007;204(1):13–21.PubMedGoogle Scholar
  47. 47.
    Dobbins J, Binder H. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology. 1976;70:1096–100.PubMedGoogle Scholar
  48. 48.
    Backman L, Hallberg D. Small intestinal length. An intraoperative study in obesity. Acta Chir Scand. 1974;140:57–63.PubMedGoogle Scholar
  49. 49.
    Slater G, Aufses A. Small bowel length in Crohn’s disease. Am J Gastroenterol. 1991;8:1037–40.Google Scholar
  50. 50.
    Nightingale J, Bartram C, Lennard-Jones J. Length of residual small bowel after partial resection: correlation between radiographic and surgical measurements. Gastrointest Radiol. 1991;16:305–6.PubMedGoogle Scholar
  51. 51.
    Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr. 2008;27(3):328–39.PubMedGoogle Scholar
  52. 52.
    Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000;119:1496–505.PubMedGoogle Scholar
  53. 53.
    Jianfeng G, Weiming Z, Ning L, Fangnan L, Li T, Nan L, et al. Serum citrulline is a simple quantitative marker for small intestinal enterocytes mass and absorption function in short bowel patients. J Surg Res. 2005;127(2):177–82.PubMedGoogle Scholar
  54. 54.
    Luo M, Fernandez-Estivariz C, Manatunga A, Bazargan N, Gu L, Jones D, et al. Are plasma citrulline and glutamine biomarkers of intestinal absorptive function in patients with short bowel syndrome? J Parenter Enteral Nutr. 2007;31:1–7.Google Scholar
  55. 55.
    Ziegler T, Leader L. Parenteral nutrition: transient or permanent therapy in intestinal failure? Gastroenterology. 2006;130:S37–42.PubMedGoogle Scholar
  56. 56.
    Sigalet D, Boctor D, Brindle M, Lam V, Robertson M. Elements of successful intestinal rehabilitation. J Pediatr Surg [Internet]. 2011;46(1):150–6. Available from: Cited 20 Sep 2012. Elsevier Inc.Google Scholar
  57. 57.
    Messing B, Joly F. Guidelines for management of home parenteral support in adult chronic intestinal failure patients. Gastroenterology. 2006;130(2 Suppl 1):S43–51.PubMedGoogle Scholar
  58. 58.
    Goulet O, Joly F, Corriol O, Colomb-Jung V. Some new insights in intestinal failure-associated liver disease. Curr Opin Organ Transplant. 2009;14(3):256–61.PubMedGoogle Scholar
  59. 59.
    Ekema G, Falchetti D, Boroni G, Tanca AR, Altana C, Righetti L, et al. Reversal of severe parenteral nutrition-associated liver disease in an infant with short bowel syndrome using parenteral fish oil (omega-3 fatty acids). J Pediatr Surg. 2008;43(6):1191–5.PubMedGoogle Scholar
  60. 60.
    Gura KM, Lee S, Valim C, Zhou J, Kim S, Modi BP, et al. Safety and efficacy of a fish-oil-based fat emulsion in the treatment of parenteral nutrition-associated liver disease. Pediatrics. 2008;121(3):e678–86.PubMedGoogle Scholar
  61. 61.
    Mertes N, Grimm H, Fürst P, Stehle P. Safety and efficacy of a new parenteral lipid emulsion (SMOFlipid) in surgical patients: a randomized, double-blind, multicenter study. Ann Nutr Metab. 2006;50(3):253–9.PubMedGoogle Scholar
  62. 62.
    Schiano T, Klang M, Quesada E, Scott F, Tao Y, Shike M. Thiamine status in patients receiving long-term home parenteral nutrition. Am J Gastroenterol. 1996;91(12):2555–9.PubMedGoogle Scholar
  63. 63.
    Wolman S, Anderson G, Marliss E, Jeejeebhoy K. Zinc in total parenteral nutrition: requirements and metabolic effects. Gastroenterology. 1979;76:458–67.PubMedGoogle Scholar
  64. 64.
    Lane H, Lotspeich C, Moore C, Ballard J, Dudrick S, Warren D. The effect of selenium supplementation on selenium status of patients receiving chronic total parenteral nutrition. J Parenter Enteral Nutr. 1987;11:177–82.Google Scholar
  65. 65.
    Vantini I, Benini L, Bonfante F, Talamini G, Sembenini C, Chiarioni G, et al. Survival rate and prognostic factors in patients with intestinal failure. Dig Liver Dis. 2004;36:46–55.PubMedGoogle Scholar
  66. 66.
    Amiot A, Messing B, Corcos O, Panis Y, Joly F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin Nutr. 2012;23:1–7. Elsevier Ltd.Google Scholar
  67. 67.
    Bines JE. Intestinal failure: a new era in clinical management. J Gastroenterol Hepatol. 2009;24 Suppl 3:S86–92.PubMedGoogle Scholar
  68. 68.
    Briones E, Iber F. Liver and biliary tract changes associated with total parenteral nutrition: pathogenesis and prevention. J Am Coll Nutr. 1995;14:219–28.PubMedGoogle Scholar
  69. 69.
    Cavicchi M, Beau P, Crenn P, Degott C, Messing B. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med. 2000;132(7):525–32.PubMedGoogle Scholar
  70. 70.
    Lowry S, Brennan M. Abnormal liver function during parenteral nutrition: relation to infusion excess. J Surg Res. 1979;26:300.Google Scholar
  71. 71.
    Lindor K, Burnes J. Ursodeoxycholic acid for the treatment of home parenteral nutrition-associated cholestasis. Gastroenterology. 1991;101:250–3.PubMedGoogle Scholar
  72. 72.
    Spagnuolo M, Iorio R, Vegnente A, Guarino A. Ursodeoxycholic acid for treatment of cholestasis in children on long-term total parenteral nutrition: a pilot study. Gastroenterology. 1996;111:716–9.PubMedGoogle Scholar
  73. 73.
    Buchman A, Moukarzel A, Goodson B, Herzog F, Pollack P, Reyen L, et al. Catheter-related infections associated with home parenteral nutrition and predictive factors for the need for catheter removal in their treatment. J Parenter Enteral Nutr. 1994;18:297–302.Google Scholar
  74. 74.
    Buchman A, Misra S, Moukarzel A, Ament M. Catheter thrombosis and superior/inferior vena cava syndrome are rare complications of long term parenteral nutrition. Clin Nutr. 1994;13(6):356–60.PubMedGoogle Scholar
  75. 75.
    Moukarzel A, Haddad I, Ament M, Buchman A, Reyen L, Maggioni A, et al. 230 patient years of experience with home long-term parenteral nutrition in childhood: natural history and life of central venous catheters. J Pediatr Surg. 1994;29(10):1323–7.PubMedGoogle Scholar
  76. 76.
    Leiby J, Purcell H, Demaria J, Kraut E, Sagone A, Metz E. Pulmonary embolism as a result of Hickman catheter-related thrombosis. Am J Med. 1989;86:228–31.PubMedGoogle Scholar
  77. 77.
    Gould J, Carloss H, Skinner W. Groshong catheter-associated subclavian venous thrombosis. Am J Med. 1993;95:419–23.PubMedGoogle Scholar
  78. 78.
    Buchman A, Sohel M, Brown M, Jenden D, Ahn C, Roch M, et al. Verbal and visual memory improve after choline supplementation in long-term total parenteral nutrition: a pilot study. J Parenter Enteral Nutr. 2001;25:30–5.Google Scholar
  79. 79.
    DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and the short bowel syndrome: part 1. Am J Gastroenterol. 2004;99(7):1386–95.PubMedGoogle Scholar
  80. 80.
    Drucker D, Erlich P, Asa S, Brubaker P. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A. 1996;93(15):7911–26.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Joly F, Dray X, Corcos O, Barbot L, Kapel N, Messing B. Tube feeding improves intestinal absorption in short bowel syndrome patients. Gastroenterology. 2009;136(3):824–31. AGA Institute American Gastroenterological Association.PubMedGoogle Scholar
  82. 82.
    Vanderhoof J. Short bowel syndrome. Neonatal Gastroenterol. 1996;23:377–86.Google Scholar
  83. 83.
    McIntyre P, Fitchew M, Lennard-Jones J. Patients with a jejunostomy do not need a special diet. Gastroenterology. 1986;91:25–33.PubMedGoogle Scholar
  84. 84.
    Lennard-Jones J. Review article: practical management of the short bowel. Aliment Pharmacol Ther. 1994;8:563–77.PubMedGoogle Scholar
  85. 85.
    Cosnes J, Lamy P, Beaugerie L, Le Quintrec M, Gendre J, Le Quintrec Y. Adaptive hyperphagia in patients with postsurgical malabsorption. Gastroenterology. 1990;99(6):1814–9.PubMedGoogle Scholar
  86. 86.
    Aly A, Barany F, Kollberg B, Monsen U, Wisen O, Johansson C. Effect of an H2-receptor blocking agent on diarrhoeas after extensive small bowel resection in Crohn’s disease. Acta Med Scand. 1980;207:119–22.PubMedGoogle Scholar
  87. 87.
    Jacobsen O, Ladefoged K, Stage J, Jarnum S. Effects of cimetidine on jejunostomy effluents in patients with severe short-bowel syndrome. Scand J Gastroenterol. 1986;21(7):824–8.PubMedGoogle Scholar
  88. 88.
    Jeppesen P, Staun M, Tjellesen L, Mortensen P. Effect of intravenous ranitidine and omeprazole on intestinal absorption of water, sodium, and macronutrients in patients with intestinal resection. Gut. 1998;43:763–9.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Williams N, Evans P, King R. Gastric acid secretion and gastrin production in the short bowel syndrome. Gut. 1985;26(9):914–9.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Cooper J, Williams N, King R, Barker M. Effects of a long-acting somatostatin analogue in patients with severe ileostomy diarrhoea. Br J Surg. 1986;73(2):128–31.PubMedGoogle Scholar
  91. 91.
    Kusuhara K, Kusunoki M, Okamoto T, Sakanoue Y, Utsunomiya J. Reduction of the effluent volume in high-output ileostomy patients by a somatostatin analogue, SMS 201–995. Int J Colorectal Dis. 1992;7(4):202–5.PubMedGoogle Scholar
  92. 92.
    Rodrigues C, Lennard-Jones J, Thompson D, Farthing M. The effects of octreotide, soy polysaccharide, codeine and loperamide on nutrient, fluid and electrolyte absorption in the short-bowel syndrome. Aliment Pharmacol Ther. 1989;3(2):159–69.PubMedGoogle Scholar
  93. 93.
    Sukhotnik I, Khateeb K, Krausz MM, Sabo E, Siplovich L, Coran AG, et al. Sandostatin impairs postresection intestinal adaptation in a rat model of short bowel syndrome. Dig Dis Sci. 2002;47(9):2095–102.PubMedGoogle Scholar
  94. 94.
    Hodin RA, Saldinger P, Meng S. Small bowel adaptation: counter regulatory effects of epidermal growth factor and somatostatin on the program of early gene expression. Surgery. 1995;118(2):206–10.PubMedGoogle Scholar
  95. 95.
    King R, Norton T, Hill G. A double-blind crossover study of the effect of loperamide hydrochloride and codeine phosphate on ileostomy output. Aust N Z J Surg. 1982;52(2):121–4.PubMedGoogle Scholar
  96. 96.
    Tytgat G, Huibregtse K. Loperamide and ileostomy output – placebo-controlled double-blind crossover study. BMJ. 1975;2:667–8.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Newton C. Effect of codeine phosphate, Lomotil, and Isogel on ileostomy function. Gut. 1978;19(5):377–83.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Hofmann A, Poley J. Role of bile acid malabsorption in the pathogenesis of diarrhoea and steatorrhoea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglycerides. Gastroenterology. 1972;62:918–34.PubMedGoogle Scholar
  99. 99.
    Compston J, Horton L. Oral 25-hydroxyvitamin D3 in treatment of osteomalacia associated with ileal resection and cholestyramine. Gastroenterology. 1978;74:900–2.PubMedGoogle Scholar
  100. 100.
    Hart M, Phares C, Erdman S, Grandjean C, Park J, Vanderhoof J. Augmentation of postresection mucosal hyperplasia by plerocercoid growth factor (PGF) – analog of human growth hormone. Dig Dis Sci. 1987;32(11):1275–80.PubMedGoogle Scholar
  101. 101.
    Shulman D, Hu C, Duckett G, Lavallee-Grey M. Effects of short-term growth hormone therapy in rats undergoing 75% small intestinal resection. J Pediatr Gastroenterol Nutr. 1992;14:3–11.PubMedGoogle Scholar
  102. 102.
    Tamada H, Nezu R, Matsuo Y, Imamura I, Takagi Y, Okada A. Alanyl glutamine-enriched total parenteral nutrition restores intestinal adaptation after either proximal or distal massive resection in rats. J Parenter Enteral Nutr. 1993;17(3):236–42.Google Scholar
  103. 103.
    Gardemann A, Watanabe Y, Grosse V, Hesse S, Jungermann K. Increases in intestinal glucose absorption and hepatic glucose uptake elicited by luminal but not vascular glutamine in the jointly perfused small intestine and liver of the rat. Biochem J. 1992;283:759–65.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Byrne TA, Morrissey TB, Nattakom TV, Ziegler TR, Wilmore DW. Growth hormone, glutamine, and a modified diet enhance nutrient absorption in patients with severe short bowel syndrome. JPEN J Parenter Enteral Nutr. 1995;19(4):296–302.PubMedGoogle Scholar
  105. 105.
    Weiming Z, Ning L, Jieshou L. Effect of recombinant human growth hormone and enteral nutrition on short bowel syndrome. J Parenter Enteral Nutr. 2004;28(6):377.Google Scholar
  106. 106.
    Scolapio J, Camilleri M, Fleming C, Oenning L, Burton D, Sebo T, et al. Effect of growth hormone, glutamine, and diet on adaptation in short-bowel syndrome: a randomized, controlled study. Gastroenterology. 1997;113(4):1074.PubMedGoogle Scholar
  107. 107.
    Szkudlarek J, Jeppesen P, Mortensen P. Effect of high dose growth hormone with glutamine and no change in diet on intestinal absorption in short bowel patients: a randomised, double blind, crossover, placebo controlled study. Gut. 2000;47(2):199.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Seguy D, Vahedi K, Kapel N, Souberbielle J, Messing B. Low-dose growth hormone in adult home parenteral nutrition-dependent short bowel syndrome patients: a positive study. Gastroenterology. 2003;124(2):293.PubMedGoogle Scholar
  109. 109.
    Ellegard L, Bosaeus I, Nordgren S, Bengtsson B. Low-dose recombinant human growth hormone increases body weight and lean body mass in patients with short bowel syndrome. Ann Surg. 1997;225(1):88–96.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Scolapio J, McGreevy K, Tennyson G, Burnett O. Effect of glutamine in short-bowel syndrome. Clin Nutr. 2001;20(4):319.PubMedGoogle Scholar
  111. 111.
    Meier J, Nauck M, Pott A, Heinze K, Goetze O, Bulut K, et al. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology. 2006;130(1):44–54.PubMedGoogle Scholar
  112. 112.
    Guan X, Karpen H, Stephens J, Bukowski J, Niu S, Zhang G, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology. 2006;130(1):150–64.PubMedGoogle Scholar
  113. 113.
    Jeppesen P, Hartmann B, Hansen B, Thulesen J, Holst J, Mortensen P. Impaired meal stimulated glucagon-like peptide 2 response in ileal resected short bowel patients with intestinal failure. Gut. 1999;45(4):559–63.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Jeppesen P, Lund P, Gottschalck I, Nielsen H, Holst J, Mortensen J, et al. Short bowel patients treated for two years with glucagon-like peptide 2: effects on intestinal morphology and absorption, renal function, bone and body composition, and muscle function. Gastroenterol Res Pract. 2009;616054:12.Google Scholar
  115. 115.
    Jeppesen P, Sanguinetti E, Buchman A, Howard L, Scolapio J, Ziegler T, et al. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut. 2005;54(9):1224–31.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Jeppesen P, Gilroy R, Pertkiewicz M, Allard J, Messing B, O’Keefe S. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60(7):902–14.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Buchman AL, Katz S, Fang JC, Bernstein CN, Abou-Assi SG, Teduglutide Study Group. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn’s disease. Inflamm Bowel Dis. 2010;16(6):962–73.PubMedGoogle Scholar
  118. 118.
    Sukhotnik I, Yakirevich E, Coran AG, Siplovich L, Krausz M, Hirsh M, et al. Effect of transforming growth factor-α on intestinal adaptation in a rat model of short bowel syndrome. J Surg Res. 2002;108(2):235–42.PubMedGoogle Scholar
  119. 119.
    Falcone R, Stern L, Kemp C, Erwin C, Warner B. Intestinal adaptation occurs independent of transforming growth factor-alpha. J Pediatr Surg. 2000;35(2):365–70.PubMedGoogle Scholar
  120. 120.
    Kato Y, Yu D, Schwartz M. Enhancement of intestinal adaptation by hepatocyte growth factor. J Pediatr Surg. 1998;33(2):235.PubMedGoogle Scholar
  121. 121.
    Alavi K, Prasad R, Lundgren K, Schwartz M. Interleukin-11 enhances small intestine absorptive function and mucosal mass after intestinal adaptation. J Pediatr Surg. 2000;35(2):371.PubMedGoogle Scholar
  122. 122.
    Ziegler T, Mantell M, Chow J, Rombeau J, Smith R. Intestinal adaptation after extensive small bowel resection: differential changes in growth and insulin-like growth factor system messenger ribonucleic acids in jejunum and ileum. Endocrinology. 1998;139(7):3119–26.PubMedGoogle Scholar
  123. 123.
    Yang H, Wildhaber B, Teitelbaum D. 2003 Harry M. Vars Research Award. Keratinocyte growth factor improves epithelial function after massive small bowel resection. JPEN J Parenter Enteral Nutr. 2003;27(3):198.PubMedGoogle Scholar
  124. 124.
    Wales PW. Surgical therapy for short bowel syndrome. Pediatr Surg Int. 2004;20:647–57.PubMedGoogle Scholar
  125. 125.
    Carlson G. Surgical management of intestinal failure. Proc Nutr Soc. 2003;62(3):711–8.PubMedGoogle Scholar
  126. 126.
    Panis Y, Messing B, Rivet P, Coffin B, Hautefeuille P, Matuchansky C, et al. Segmental reversal of the small bowel as an alternative to intestinal transplantation in patients with short bowel syndrome. Ann Surg. 1997;225(4):401–7.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Barksdale EM, Stanford A. The surgical management of short bowel syndrome. Curr Gastroenterol Rep. 2002;4(3):229–37.PubMedGoogle Scholar
  128. 128.
    Brolin R. Colon interposition for extreme short bowel syndrome: a case report. Surgery. 1986;100(3):576–80.PubMedGoogle Scholar
  129. 129.
    Thompson J, Langnas A, Pinch L, Kaufman S, Quigley E, Vanderhoof J. Surgical approach to short bowel syndrome. Experience in a population of 160 patients. Ann Surg. 1995;222(4):600–5.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Devine R, Kelly K. Surgical therapy of the short bowel syndrome. Gastroenteol Clin N Am. 1989;18(3):603–18.Google Scholar
  131. 131.
    Sudan D, Thompson J, Botha J, Grant W, Antonson D, Raynor S, et al. Comparison of intestinal lengthening procedures for patients with short bowel syndrome. Ann Surg. 2007;246(4):593–601; discussion 601–4.PubMedGoogle Scholar
  132. 132.
    Bianchi A. Intestinal loop lengthening – a technique for increasing small intestinal length. J Pediatr Surg. 1980;15:145–51.PubMedGoogle Scholar
  133. 133.
    Sudan D. Advances in the nontransplant medical and surgical management of intestinal failure. Curr Opin Organ Transplant. 2009;14:274–9.PubMedGoogle Scholar
  134. 134.
    Reinshagen K, Kabs C, Wirth H, Hable N, Brade J, Zahn K, et al. Long-term outcome in patients with short bowel syndrome after longitudinal intestinal lengthening and tailoring. J Pediatr Gastroenterol Nutr. 2008;47:573–8.PubMedGoogle Scholar
  135. 135.
    Kim HB, Fauza D, Garza J, Oh J-T, Nurko S, Jaksic T. Serial transverse enteroplasty (STEP): a novel bowel lengthening procedure. J Pediatr Surg. 2003;38(3):425–9.PubMedGoogle Scholar
  136. 136.
    Modi BP, Javid PJ, Jaksic T, Piper H, Langer M, Duggan C, et al. First report of the international serial transverse enteroplasty data registry: indications, efficacy, and complications. J Am Coll Surg. 2007;204(3):365–71.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Oliveira C, de Silva N, Wales PW. Five-year outcomes after serial transverse enteroplasty in children with short bowel syndrome. J Pediatr Surg. 2012;47(5):931–7. Elsevier B.V.PubMedGoogle Scholar
  138. 138.
    Abu-Elmagd K. Intestinal transplantation for short bowel syndrome and gastrointestinal failure: current consensus, rewarding outcomes, and practical guidelines. Gastroenterology. 2006;130:S132–7.PubMedGoogle Scholar
  139. 139.
    Tzakis AG, Kato T, Levi DM, DeFaria W, Selvaggi G, Weppler D, et al. 100 multivisceral transplants at a single center. Ann Surg. 2005;242:480–93.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Fishbein TM, Kaufman SS, Florman SS, Gondolesi GE, Schiano T, Kim-Schluger L, et al. Isolated intestinal transplantation: proof of clinical efficacy. Transplantation. 2003;76(4):636–40.PubMedGoogle Scholar
  141. 141.
    Nishida S, Levi D, Kato T, Nery JR, Mittal N, Hadjis N, et al. Ninety-five cases of intestinal transplantation at the University of Miami. J Gastrointest Surg. 2002;6(2):233–9.PubMedGoogle Scholar
  142. 142.
    Abu-Elmagd KM, Costa G, Bond GJ, Soltys K, Sindhi R, Wu T, et al. Five hundred intestinal and multivisceral transplantations at a single center: major advances with new challenges. Ann Surg. 2009;250(4):567–81.PubMedGoogle Scholar
  143. 143.
    Abu-Elmagd KM, Kosmach-Park B, Costa G, Zenati M, Martin L, Koritsky DA. Long-term survival, nutritional autonomy, and quality of life after intestinal and multivisceral transplantation. Ann Surg. 2012;256(3):494–508.PubMedGoogle Scholar
  144. 144.
    Fishbein TM. Intestinal transplantation. N Engl J Med. 2009;361(10):998–1008.PubMedGoogle Scholar
  145. 145.
    Fishbein TM, Matsumoto CS. Intestinal replacement therapy: timing and indications for referral of patients to an intestinal rehabilitation and transplant program. Gastroenterology. 2006;130:S147–51.PubMedGoogle Scholar
  146. 146.
    Vianna RM, Mangus RS. Present prospects and future perspectives of intestinal and multivisceral transplantation. Curr Opin Clin Nutr Metab Care. 2009;12(3):281–6.PubMedGoogle Scholar
  147. 147.
    Fecteau A, Atkinson P, Grant D. Early referral is essential for successful pediatric small bowel transplantation: the Canadian experience. J Pediatr Surg. 2001;36:681–4.PubMedGoogle Scholar
  148. 148.
    DeLegge M, Alsolaiman MM, Barbour E, Bassas S, Siddiqi MF, Moore NM. Short bowel syndrome: parenteral nutrition versus intestinal transplantation. Where are we today? Dig Dis Sci. 2007;52(4):876–92.PubMedGoogle Scholar
  149. 149.
    O’Keefe SJD, Emerling M, Koritsky D, Martin D, Stamos J, Kandil H, et al. Nutrition and quality of life following small intestinal transplantation. Am J Gastroenterol. 2007;102(5):1093–100.PubMedGoogle Scholar
  150. 150.
    Sudan D. Cost and quality of life after intestinal transplantation. Gastroenterology. 2006;130:S158–62.PubMedGoogle Scholar
  151. 151.
    Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240(5):748–54.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Gupta A, Dixit A, Sales KM, Winslet MC, Seifalian AM. Tissue engineering of small intestine – current status. Biomacromolecules. 2006;7(10):2701–9.PubMedGoogle Scholar
  153. 153.
    Dunn J. Is the tissue-engineered intestine clinically viable? Nat Clin Pract Gastroenterol Hepatol. 2008;5(7):366–7.PubMedGoogle Scholar
  154. 154.
    Howard L, Heaphey L, Fleming CR, Lininger L, Steiger E. Four years of North American registry home parenteral nutrition outcome data and their implications for patient management. J Parenter Enteral Nutr. 1991;15(4):384–93.Google Scholar
  155. 155.
    Lloyd DA, Vega R, Bassett P, Forbes A, Gabe SM. Survival and dependence on home parenteral nutrition: experience over a 25-year period in a UK referral centre. Aliment Pharmacol Ther. 2006;24(8):1231–40.PubMedGoogle Scholar
  156. 156.
    Scolapio JS, Fleming CR, Kelly DG, Wick DM, Zinsmeister AR. Survival of home parenteral nutrition-treated patients: 20 years of experience at the Mayo Clinic. Mayo Clin Proc. 1999;74(3):217–22. Mayo Foundation for Medical Education and Research.PubMedGoogle Scholar
  157. 157.
    Jeppesen PB, Langholz E, Mortensen PB. Quality of life in patients receiving home parenteral nutrition. Gut. 1999;44(6):844–52.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Richards D, Carlson G. Quality of life assessment and cost effectiveness. In: Nightingale J, editor. Intestinal failure. London: Greenwich Medical Media Limited; 2001. p. 447–57.Google Scholar
  159. 159.
    Smith CE. Quality of life in long-term total parenteral nutrition patients and their family caregivers. J Parenter Enteral Nutr. 1993;17:501–6.Google Scholar
  160. 160.
    Bianchi A. From the cradle to enteral autonomy: the role of autologous gastrointestinal reconstruction. Gastroenterology. 2006;130:S141.Google Scholar
  161. 161.
    Javid PJ, Kim HB, Duggan CP, Jaksic T. Serial transverse enteroplasty is associated with successful short-term outcomes in infants with short bowel syndrome. J Pediatr Surg. 2005;40:1020.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of SurgeryMcMaster UniversityHamiltonCanada
  2. 2.Department of SurgeryThe Ottawa HospitalOttawaCanada

Personalised recommendations