Skip to main content

Provenance Determination of Archaeological Metal Objects

  • Chapter
Archaeometallurgy in Global Perspective

Abstract

Archaeometallurgy is one aspect of the widespread interdisciplinary field of science-based archaeology and is itself multifaceted (for a recent review, see Rehren and Pernicka 2008). This article deals mainly with the question of how to determine the provenance or “origin” of ancient metals, a subject that is undoubtedly of major importance in archaeology even though it has often been disputed. Here, a short history of the practice of provenance analysis of metals by chemical methods is presented. Studies in this direction were often loaded with high (and mostly unrealistic) expectations and were seemingly disappointing. Close to being regarded as a complete failure, provenance analysis of archaeological metal objects was revived through the introduction of lead isotope analysis, which itself went through a cycle of overly optimistic expectations, later condemnations and finally a realistic assessment of pros and cons. Combined with trace element patterns, lead isotopes do provide a tool with which to determine the provenance of most metals that were produced and used in antiquity. Not all problems can be solved, at least not in the near future, but this is not due to a wrong concept or methodology, but rather due to our limited ability to distinguish between ore deposits, and the imbalance between analyses of finished artefacts and those of archaeologically meaningful ore samples. More new parameters are emerging that also carry information on the provenance of a metal, and the methodology will be adjusted and improved for specific metal types. With realistic approaches and expectations, provenance studies of archaeological metal objects will remain a valuable component of archaeometallurgical and archaeological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barker, G., & Slater, E. (1971). The first metallurgy in Italy in the light of the metal analyses from the Pigorini Museum. Bullettino di Paletnologia Italiana, 80, 183–212.

    Google Scholar 

  • Begemann, F., & Schmitt-Strecker, S. (2009). Über das frühe Kupfer Mesopotamiens. Iranica Antiqua, 54, 1–45.

    Google Scholar 

  • Begemann, F., Schmitt-Strecker, S., & Pernicka, E. (2003). On the composition and provenance of metal finds from Beşiktepe (Troia). In Wagner G. A. Pernicka E, & Uerpmann H.-P. (eds.) Troia and the Troad—Scientific approaches (pp. 173–201). Springer, Heidelberg.

    Google Scholar 

  • Bendall, C., Wigg-Wolf, D., Lahaye, Y., von Kaenel, H.-M., & Brey, G. P. (2009) Detecting changes of Celtic gold sources through the application of trace element and Pb isotope laser ablation analysis of Celtic gold coins. Archaeometry, 51, 598–625.

    Google Scholar 

  • Blin-Stoyle, A. (1959) Chemical composition of the bronzes. Archaeometry, 2, 1–17.

    Google Scholar 

  • Brauns, M., Schwab, R., Gassmann, G., Wieland, G., & Pernicka, E. (2013). Provenance of Iron Age iron in southern Germany: A new approach. Journal of Archaeological Science, 40, 841–849.

    Google Scholar 

  • Briard, J., & Giot, P. R. (1956). Analyses des objets métalliques du chalcolithique et de l’age de bronze ancien et du bronze moyen de Bretagne. L’Anthropolgie, 60, 495–500.

    Google Scholar 

  • Brill, R. H., & Wampler, J. M. (1965). Isotope ratios in archaeological objects of lead. Application of science in the examination of works of art (pp. 155–166). Boston: Museum of Fine Arts.

    Google Scholar 

  • Britton, D. (1961). A study of the composition of Wessex culture bronzes. Based on spectroscopic analyses by E. E. Richards. Archaeometry, 4, 39–52.

    Google Scholar 

  • Budd, P. D. (1991). Eneolithic arsenical copper—Heat-treatment and the metallographic interpretation of manufacturing processes. In E. Pernicka, & G. A. Wagner (Eds.), Archaeometry ’90: International symposium in archaeometry (pp. 35–44). Basel: Birkhäuser Verlag.

    Google Scholar 

  • Budd, P. D., Gale, D., Pollard, A. M., Thomas, R. G., & Williams, P. A. (1992). The early development of metallurgy in the British Isles. Antiquity, 66, 677–686.

    Google Scholar 

  • Budd, P. D., Haggerty, A., Pollard, A. M., Scaife, B., & Thomas, R. G. (1996). Rethinking the quest for provenance. Antiquity, 70, 168–174.

    Google Scholar 

  • Budd, P. D., Lythgoe, P., McGill, R. A. R., Pollard, A. M., & Scaife, B. (1999). Zinc fractionation in liquid brass (Cu/Zn) alloy: Potential environmental and archaeological applications. In A. M. Pollard (Ed.), Geoarchaeology: Exploration, environments, resources (pp. 147–153). London: Special Publication 165, Geological Society.

    Google Scholar 

  • Butler, J. J., & van der Waals, J. D. (1964). Metal analysis, Studien zu den Anfängen der Metallurgie (SAM) I, and the European prehistory. A review article. Helinium, 4, 1–39.

    Google Scholar 

  • Chernykh, E. N. (1966). Istorija drevnejšej metallurgii Vostočnoj Evropy. Moskau-Leningrad: MIA 132.

    Google Scholar 

  • Chase, W. T. (1974). Comparative analysis of archaeological bronzes. In C. W. Beck (Ed.), Archaeological chemistry (Advances in Chemistry Series No. 138), 148–185.

    Google Scholar 

  • Chernykh, E. N. (1992). Ancient metallurgy in the USSR. Cambridge: Cambridge University Press.

    Google Scholar 

  • Coghlan, H. H., & Case, H. (1957). Early metallurgy of copper in Ireland and Britain. Proceedings of the Prehistoric Society, 23, 91–123.

    Google Scholar 

  • Coles, J. M. (1982). The Bronze Age in northwestern Europe: Problems and advances. In: F. Wendorf and A.E. Close (eds.): Advances in World Archaeology 1, New York, 265–321.

    Google Scholar 

  • Coustures, M.-P., Béziat, D., & Tollon, F. (2003). The use of trace element analysis of entrapped slag inclusions to establish ore-bar iron links: examples from two gallo-roman iron-making sites in France (Les Martys, Montagne Noire, and Les Ferrys, Loiret). Archaeometry, 45, 599–613.

    Google Scholar 

  • Craddock, P. T., & Meeks, N. D. (1987). Iron in ancient copper. Archaeometry, 29, 187–204.

    Google Scholar 

  • Degryse, P., Schneider, J., Kellens, N., Waelkens, M., & Muchez, P. H. (2007). Tracing the resources of iron working at ancient Sagalassos (South-west Turkey): A combined lead and strontium isotope study on iron artefacts and ores. Archaeometry, 49(1), 75–86.

    Google Scholar 

  • Desaulty, A.-M., Dillmann, P., L’Héritier, M., Mariet, C., Gratuze, B., Joron J-L, & Fluzin P (2009) Does it come from the Pays de Bray? Examination of an origin hypothesis for the ferrous reinforcements used in French medieval churches using major and trace element analyses. Journal of Archaelogical Science, 36, 2445–2462.

    Google Scholar 

  • Desch, C. H. (1928–1938). Sumerian copper—reports of committee appointed to report on the probable source of the supply of copper used by the Sumerians, British Association for the Advancement of Science Reports: 1928, pp. 437–441; 1929, pp. 264–265; 1930, pp. 267–268; 1931, pp. 269–272; 1933, pp. 302–305; 1935, pp. 340–344; 1936, pp. 308–310; 1938, pp. 345–346.

    Google Scholar 

  • Ehser, A., Borg, G., & Pernicka, E. (2011). Provenance of the gold of the early bronze age nebra sky disk, central Germany: Geochemical characterization of natural gold from Cornwall. European Journal of Mineralogy, 23(6), 895–910.

    Google Scholar 

  • Friedman, A. M., Conway, M., Kastner, M., Milsted, J., Metta, D., Fields, P. R., & Olsen, E. (1966). Copper artifacts: correlation with some types of copper ores. Science 152:1504–1506.

    Google Scholar 

  • Gale, N. H., & Stos-Gale, Z. A. (1981). Cycladic lead and silver metallurgy. Annual of British School at Athens, 76, 169–224.

    Google Scholar 

  • Gale, N. H., Gentner, W., & Wagner, G. A. (1980). Mineralogical and geographical sources of Archaic Greek coinage. Metallurgy in Numismatics, 1, 3–49.

    Google Scholar 

  • Gerlach, W., & Schweitzer, E. (1930). Die chemische Emissionsspektralanalyse. Teil I. Leopold Voß, Leipzig.

    Google Scholar 

  • Göbel, F. (1842). Über den Einfluß der Chemie auf die Ermittlung der Völker der Vorzeit oder Resultate der chemischen Untersuchung metallischer Alterthümer, insbesondere der in den Ostseegouvernements vorkommenden, behufs der Ermittlung der Völker, von welchen sie abstammen. Enke Verlag,Erlangen.

    Google Scholar 

  • Gordus A. A. (1967). Quantitative non-destructive neutron activation analysis of silver in coins. Archaeometry, 10, 78–86.

    Google Scholar 

  • Grögler, N., Geiss, J., Grünenfelder, M., & Houtermans, F. G. (1966). Isotopenuntersuchungen zur Bestimmung der Herkunft römischer Bleirohre und Bleibarren. Zeitschr. f. Naturforsch, 21a, 1167–1172.

    Google Scholar 

  • Guerra, M. F. (2004). Fingerprinting ancient gold with proton beams of different energies. Nuclear Instruments and Methods in Physics Research Section B, 226, 185–198.

    Google Scholar 

  • Härke, H. (1978). Probleme der optischen Emissionsspektralanalyse in der Urgeschichtsforschung. Prähist. Zeitschr, 53, 165–276.

    Google Scholar 

  • Hall, E. T. (1970). Analytical techniques used in archaeometry. In: T. E. Allibone (Ed.), The impact of natural sciences on archaeology (pp. 135–141). Oxford University Press, London.

    Google Scholar 

  • Hartmann, A. (1970). Prähistorische Goldfunde aus Europa. Studien zu den Anfängen der Metallurgie (SAM), Vol. 3. Gebr. Mann Verlag: Berlin.

    Google Scholar 

  • Hartmann, A. (1982). Prähistorische Goldfunde aus Europa II. Studien zu den Anfängen der Metallurgie (SAM), Vol. 5. Gebr. Mann Verlag: Berlin.

    Google Scholar 

  • Hauptmann, H., & Pernicka, E. (Hrsg). (2004). Die Metallindustrie Mesopotamiens von den Anfängen bis zum 2. Jahrtausend v. Chr. Orient-Archäologie Band 3, Katalog, Tabellen, Tafeln. Rahden: Leidorf.

    Google Scholar 

  • Hauptmann, A., Begemann, F., Heitkemper, E., Pernicka, E., & Schmitt-Strecker S (1992). Early copper produced at Feinan, Wadi Araba, Jordan: The composition of ores and copper. Archeomaterials 6:1–33.

    Google Scholar 

  • Hauptmann, A., Rehren, Th., & Pernicka, E. (1995). The composition of gold from the ancient mining district of Verespatak/Rošia Montana, Romania. In G. Morteani, & J. P. Northover (Eds.), Prehistoric Gold in Europe (pp 369–381). Amsterdam: Kluwer Academic Publishers.

    Google Scholar 

  • Hauptmann, A., Rehren, Th., & Schmitt-Strecker, S. (2003). Early Bronze Age copper metallurgy at Shahr-i Sokhta (Iran), reconsidered. In Th. Stöllner, G. Körlin, G. Steffens, & J. Cierny (Eds.), Man and Mining—Mensch und Bergbau. Der Anschnitt, Beiheft 16: 197–213. Deutsches Berbgau-Museum, Bochum.

    Google Scholar 

  • Haustein, M., Gillis, C., & Pernicka, E. (2010). Tin isotopy—A new method for solving old questions. Archaeometry, 52, 816–832.

    Google Scholar 

  • Hedges, R. E. M., & Salter, C. (1979). Source determination of iron currency bars through the analysis of slag inclusions. Archaeometry, 21, 161–175.

    Google Scholar 

  • Hirao, Y., Enomoto, J., & Tachikawa, H. (1995). Lead isotope ratios of copper, zinc and lead minerals in Turkey—In relation to the provenance study of artifacts. In H. I. H. Prince, & T. Mikasa (Ed.), Essays on ancient Anatolia and its surrounding civilizations, pp. 89–114. Wiesbaden: Harrassowitz.

    Google Scholar 

  • Hodson, F. R. (1969). Searching for structure within multivariate archaeological data. World Archaeology, 1, 90–105.

    Google Scholar 

  • Höppner, B., Bartelheim, M., Huijsmans, M., Krauss, R., Martinek, K.-P., Pernicka, E., & Schwab, R. (2005). Prehistoric copper production in the Inn valley, Austria, and the earliest copper in central Europe. Archaeometry, 47, 293–315.

    Google Scholar 

  • Junghans, S., Klein, H., & Scheufele, E. (1954). Untersuchungen zur Kupfer- und Frühbronzezeit Süddeutschlands. Ber. RGK, 34, 77–114.

    Google Scholar 

  • Junghans, S., Sangmeister, E., & Schröder, M. (1960). Metallanalysen kupferzeitlicher und frühbronzezeitlicher Bodenfunde aus Europa, Gebr. Mann Verlag, Berlin.

    Google Scholar 

  • Junghans, S., Sangmeister, E., & Schröder, M. (1968). Kupfer und Bronze in der frühen Metallzeit Europas 1–3, Berlin.

    Google Scholar 

  • Junghans, S., Sangmeister, E., & Schröder, M. (1974). Kupfer und Bronze in der frühen Metallzeit Europas 4, Gebr. Mann Verlag, Berlin.

    Google Scholar 

  • Junk, S. A., & Pernicka, E. (2003). An assessment of osmium isotope ratios as a new tool to determine the provenance of gold with platinum group metal inclusions. Archaeometry, 45, 313–331.

    Google Scholar 

  • Klein, S., Brey, G. P., Durali-Müller, S., & Lahaye, Y. (2010). Characterisation of the raw metal sources used for the production of copper and copper-based objects with copper isotopes. Archaeological and Anthropological Sciences, 2, 45–56.

    Google Scholar 

  • Krause, R. (2003). Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und Ostsee. Rahden: VML Verlag.

    Google Scholar 

  • Maddin, R., Stech Wheeler, T., & Muhly, J. D. (1980). Distinguishing artifacts made of native copper. Journal of Archaeological Science, 7, 211–225.

    Google Scholar 

  • Maréchal, J.-R. (1963). Reflections upon prehistoric metallurgy. A research based upon scientific methods. Lammersdorf: Junker.

    Google Scholar 

  • Meeks, N. D., Tite, M. S. (1980). The analyses of platinum-group element inclusions in gold antiquities. Journal of Archaeological Science, 7, 267–275.

    Google Scholar 

  • Meliksetian, K., & Pernicka, E. (2010). Geochemical characterisation of Armenian early bronze age metal artefacts and their relation to copper ores. In S. Hansen, A. Hauptmann, I. Motzenbäcker, & E. Pernicka (eds.), Von Maikop bis Trialeti. Gewinnung und Verbreitung von Metallen und Obsidian in Kaukasien im 4.-2. Jt. v. Chr. Beiträge des Internationalen Symposiums in Berlin vom 1.-3. Juni 2006. Kolloquien zur Vor- und Frühgeschichte, (Vol. 13, pp. 41–58). Habelt Verlag: Bonn.

    Google Scholar 

  • Merkel, J. (1983). Summary of experimental results for Late Bronze Age copper smelting and refining. Museum Applied Science Center Journal, 2/6, 173–179.

    Google Scholar 

  • Merkel, J. (1990). Experimental reconstruction of Bronze Age copper smelting based on archaeological evidence from Timna. In B. Rothenberg (Ed.), The ancient metallurgy of copper. London: Institute of Archaeo-Metallurgical Studies.

    Google Scholar 

  • Nezafati, N., Pernicka, E., & Momenzadeh, M. (2009). Introduction of the Deh Hosein Ancient Tin-Copper Mine, Western Iran: Evidence from geology, archaeology, geochemistry and lead isotope data. TÜBA-AR (Turkish Academy of Sciences Journal of Archaeology), 12, 223–236.

    Google Scholar 

  • Northover, J. P. (1996). Comparison of metal analyses by different laboratories and methods, Appenidx II. In H. Vandkilde (Ed.), From stone to bronze: the metalwork of the Late Neolithic and earliest Bronze Age in Denmark (pp. 359–368). Moesgård: Jutland Archaeological Society/Jutland Archaeological Society Publications, 32.

    Google Scholar 

  • Oldeberg, A. (1942). Metallteknik under förhistorisk tid. Part I. Otto Harrassowitz, Lund/Leipzig.

    Google Scholar 

  • Otto, H., & Witter, W. (1952). Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. Leipzig: Barth Verlag.

    Google Scholar 

  • Pare, C. F. E. (2000). Bronze and the Bronze Age. In C. F. E. Pare (Ed.), Metals make the world go round. The supply and circulation of metals in Bronze Age Europe (pp. 1–38). Oxbow, Oxford.

    Google Scholar 

  • Pernicka, E. (1984). Instrumentelle Multi-Elementanalyse archäologischer Kupfer- und Bronzearte-fakte Ein Methodenvergleich. Jahrbuch Römisch-Germanisches Zentralmuseum, 31, 517–531.

    Google Scholar 

  • Pernicka, E. (1987). Erzlagerstätten in der Ägäis und ihre Ausbeutung im Altertum: Geochemische Untersuchungen zur Herkunftsbestimmung archäologischer Metallobjekte. Jahrbuch Römisch-Germanisches Zentralmuseum, 34, 607–714.

    Google Scholar 

  • Pernicka, E. (1990) Entstehung und Ausbreitung der Metallurgie in prähistorischer Zeit. Jahrb. Röm.-Germ. Zentralmus, 37, 21–129.

    Google Scholar 

  • Pernicka, E. (1999). Trace element fingerprinting of ancient Copper: A guide to technology or provenance?. In S. M. M. Young, A. M. Pollard, P. Budd, & R. A. Ixer (Eds.), Metals in antiquity. BAR International Series, 792 (pp. 163–171). Oxford: Archaeopress.

    Google Scholar 

  • Pernicka, E., Adam, K., Böhme, M., Hezarkhani, Z., Nezafati, N., Schreiner, M., Winterholler, B., Momenzadeh, M., & Vatandoust, A. (2011). Archaeometallurgical researches at Arisman in central Iran. In A. Vatandoust, H. Parzinger, & B. Helwing (eds.), Early mining and metallurgy on the Central Iranian Plateau. Report on the first five years of research of the Joint Iranian-German Research Project. Archäologie in Iran und Turan 9, 633–705, Philipp von Zabern, Mainz.

    Google Scholar 

  • Pernicka, E., Begemann, F., Schmitt-Strecker, S., & Wagner, G. A. (1993). Eneolithic and Early Bronze Age copper artefacts from the Balkans and their relation to Serbian copper ores. Praehistorische Zeitschrift, 68, 1–54.

    Google Scholar 

  • Pernicka, E., Begemann, F., Schmitt-Strecker, S., Todorova, H., & Kuleff, I. (1997). Prehistoric copper in Bulgaria: Its composition and provenance. Eurasia Antiqua, 3, 41–180.

    Google Scholar 

  • Pittioni, R. (1957). Urzeitlicher Bergbau auf Kupfererz und Spurenanalyse. Beiträge zum Problem der Relation Lagerstätte-Fertigobjekt. Arch. Austriaca. Beih. 1, Wien.

    Google Scholar 

  • Pollard, A. M., Thomas, R. G., Ware, D. P., & Williams, P. A. (1991). Experimental smelting of secondary copper minerals: Implications for Early Bronze Age metallurgy in Britain. In E. Pernicka, G. A. Wagner (Eds.), Archaeometry ’90 (pp. 127–136). Basel: Birkhäuser Verlag.

    Google Scholar 

  • Preuschen, E., & Pittioni, R. (1937). Untersuchungen im Bergbaugebiete Kelchalpe bei Kitzbühel, Tirol. Erster Bericht über die Arbeiten 1931–1936 zur Urgeschichte des Kupferbergwesens in Tirol. Mitt. Prähist. Komm. Volume 3.

    Google Scholar 

  • Radivojević, M., Rehren, Th., Pernicka, E., Šljivar, D., Brauns, M., & Borić, D. (2010). On the origins of extractive metallurgy: new evidence from Europe. Journal of Archaeological Science, 37, 2775–2787.

    Google Scholar 

  • Rehren, Th., Boscher, L., & Pernicka, E. (2012). Large scale smelting of speiss and arsenical copper at Early Bronze Age Arisman, Iran. Journal of Archaeological Science, 39(6), 1717–1727.

    Google Scholar 

  • Renfrew, C. (1973). Before civilization, Penguin, London.

    Google Scholar 

  • Rychner, V., Kläntschi, N. (1995). Arsenic, Nickel et Antimoine. Cahiers d‘Archéologie Romande, No. 63 and 64, Lausanne.

    Google Scholar 

  • Sayre, E. V., Joel, E. C., Blackman, M. J., Yener, K. A., & Özbal, H. (2001). Stable lead isotope studies of Black Sea Anatolian ore sources and related Bronze Age and Phrygian artefacts from nearby archaeological sites. Appendix:New Central Taurus ore data. Archaeometry, 43, 77–115.

    Google Scholar 

  • Schmiderer A. (2008) Geochemische Charakterisierung von Goldvorkommen in Europa. Diss. Martin-Luther-Universität Halle-Wittenberg.

    Google Scholar 

  • Schwab, R., Heger, D., Höppner, B., & Pernicka, E. (2006). The provenance of iron artefacts from Manching: a multi-technique approach. Archaeometry, 48, 433–452.

    Google Scholar 

  • Seeliger, T. C., Pernicka, E., Wagner, G. A., Begemann, F., Schmitt-Strecker, S., Eibner, C., Öztunali, Ö., & Baranyi, I. (1985). Archäometallurgische Untersuchungen in Nord- und Ostanatolien. Jahrbuch Römisch-Germanisches Zentralmuseum, 32, 597–659.

    Google Scholar 

  • Selimchanov, I. R. (1960). Spektralanalytische Untersuchungen von Metallfunden des 3. und 2. Jahrtausends aus dem östlichen Transkaukasien—Azerbeidshan. Archaeologia Austriaca, 28, 71–79.

    Google Scholar 

  • Slater, E. A., & Charles, J. A. (1970). Archaeological classification by metal analysis. Antiquity, 44, 207–213.

    Google Scholar 

  • Thornton, C. P., Rehren, Th. H., & Pigott, V. C. (2009). The production of speiss (iron arsenide) during the Early Bronze Age in Iran. Journal of Archaeological Science, 36, 308–316.

    Google Scholar 

  • Tylecote, R. F., Ghaznavi, H. A., & Boydell, P. J. (1977). Partitioning of trace elements between the ores, fluxes, slags and metal during the smelting of copper. Journal of Archaeological Science, 4, 305–333.

    Google Scholar 

  • von Bibra, E. (1869). Die Bronzen und Kupferlegierungen der alten und ältesten Völker, mit Rücksichtnahme auf jene der Neuzeit. Erlangen.

    Google Scholar 

  • von Bibra, E. (1873). Über alte Eisen- und Silberfunde. Nürnberg and Leipzig.

    Google Scholar 

  • von Fellenberg, L. R. (1860–1867). Analysen von antiken Bronzen. Mitt. D. naturf. Ges. Bern.

    Google Scholar 

  • Wagner, G. A., Pernicka, E., Seeliger, T. C., Lorenz, I. B., Begemann, F., Schmitt-Strecker, S., Eibner, C., & Öztunali, Ö. (1986). Geochemische und isotopische Charakteristika früher Rohstoffquellen für Kupfer, Blei, Silber und Gold in der Türkei. Jahrbuch Römisch-Germanisches Zentralmuseum, 33, 723–752.

    Google Scholar 

  • Wagner, G. A., Begemann, F., Eibner, C., Lutz, J., Öztunali, Ö., Pernicka, E., & Schmitt-Strecker, S. (1989). Archäometallurgische Untersuchungen an Rohstoffquellen des frühen Kupfers Ostanatoliens. Jahrbuch Römisch-Germanisches Zentralmuseum, 36, 637–686.

    Google Scholar 

  • Wagner, G. A., Wagner, I., Öztunali, Ö., Schmitt-Strecker, S., Begemann, F. (2003). Archäometal-lurgischer Bericht über Feldforschung in Anatolienund bleiisotopische Studien an Erzen und Schlacken. In: Stöllner, T., Körlin, G. Steffens G. & Cierny J. (Eds.), Man and Mining—Mensch und Bergbau. Der Anschnitt, Beiheft 16: 475–494, Deutsches Bergbau-Museum, Bochum..

    Google Scholar 

  • Waterbolk, H. T., & Butler, J. J. (1965). Comments on the use of metallurgical analysis in prehistoric studies. Helinium, 5, 227–251.

    Google Scholar 

  • Wibel, F. (1863). Beitrag zur Kenntnis antiker Bronzen vom chemischen Standpunkte. Hamburg.

    Google Scholar 

  • Woolley, C. L. (1931). Excavations at Ur, 1930–1. The Antiquaries Journal, 11, 344.

    Google Scholar 

  • Wyttenbach, A., & Schubiger, P. A. (1973). Trace element content of Roman lead by neutron activation analysis. Archaeometry, 15, 199–207.

    Google Scholar 

  • Yener, K. A., Sayre, E. V., Joel, E. C., Özbal, H., Barnes, I. L., & Brill, R. H. (1991). Stable lead isotope studies of Central Taurus ore sources and related artifacts from Eastern Mediterranean Chalcolithic and Bronze Age sites. Journal of Archaeological Science, 18, 541–577.

    Google Scholar 

  • Young, W. J. (1972). The fabulous gold of the Pactolus valley. Bull.- Boston Museum of Fine Arts, 70/359, 4–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Pernicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pernicka, E. (2014). Provenance Determination of Archaeological Metal Objects. In: Roberts, B., Thornton, C. (eds) Archaeometallurgy in Global Perspective. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9017-3_11

Download citation

Publish with us

Policies and ethics