Skip to main content

Are Metal Ion Levels a Trigger for Surgical Intervention?

  • Chapter
  • First Online:
Metal-on-Metal Bearings

Abstract

Blood chromium and cobalt concentrations provide a useful indicator of the tribological performance of metal-on-metal hip arthroplasties. Elevated levels are associated with an increased risk of early prosthetic failure secondary to soft tissue damage and osteolysis. There are important differences between hip resurfacings and total hip replacements, however, which must be taken into account when interpreting metal ion results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delaunay C et al (2010) Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop Traumatol Surg Res 96(8):894–904

    Article  CAS  Google Scholar 

  2. Pandit H et al (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 90(7):847–851

    CAS  Google Scholar 

  3. Langton DJ et al (2011) Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg Br 93(2):164–171

    CAS  Google Scholar 

  4. Griffin WL et al (2012) Are metal ion levels a useful trigger for surgical intervention? J Arthroplasty 27(8 Suppl):32–36

    Article  Google Scholar 

  5. Kwon YM et al (2010) Analysis of wear of retrieved metal-on-metal hip resurfacing implants revised due to pseudotumours. J Bone Joint Surg Br 92(3):356–361

    Google Scholar 

  6. McKellop H et al (1996) In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin Orthop Relat Res 329(Suppl):128–140

    Google Scholar 

  7. Glyn-Jones S et al (2011) The in vivo linear and volumetric wear of hip resurfacing implants revised for pseudotumor. J Bone Joint Surg Am 93(23):2180–2188

    Article  Google Scholar 

  8. Reinisch G et al (2003) Retrieval study of uncemented metal–metal hip prostheses revised for early loosening. BioMaterials 24(6):1081–1091

    Article  CAS  Google Scholar 

  9. Morlock MM et al (2008) Modes of implant failure after hip resurfacing: morphological and wear analysis of 267 retrieval specimens. J Bone Joint Surg Am 90(Suppl 3):89–95

    Article  Google Scholar 

  10. De Haan R et al (2008) Revision of metal-on-metal resurfacing arthroplasty of the hip: the influence of malpositioning of the components. J Bone Joint Surg Br 90(9):1158–1163

    CAS  Google Scholar 

  11. Liu F et al (2006) Importance of head diameter, clearance, and cup wall thickness in elastohydrodynamic lubrication analysis of metal-on-metal hip resurfacing prostheses. Proc Inst Mech Eng H 220(6):695–704

    Google Scholar 

  12. Isaac GH et al (2006) Development rationale for an articular surface replacement: a science-based evolution. Proc Inst Mech Eng H 220(2):253–268

    Article  CAS  Google Scholar 

  13. Langton DJ et al (2011) Reducing metal ion release following hip resurfacing arthroplasty. Orthop Clin North Am 42(2):169–180, viii

    Article  Google Scholar 

  14. Günther KP, Schmitt J, Campbell P, Delaunay CP, Drexler H, Ettema HB, García-Cimbrelo E, Hannemann F, Hartmann A, Huberti H, Knahr K, Kunze J, Langton DJ, LauerW, Learmonth I, Lohmann CH, Lützner J, Morlock M, Seidler A, Wimmer MA, Zagra L (2013) Consensus statement: current evidence on the management of metal-on-metal bearings—April 16, 2012. Hip Int 23(1):2–5

    Google Scholar 

  15. Daniel J et al (2007) The validity of serum levels as a surrogate measure of systemic exposure to metal ions in hip replacement. J Bone Joint Surg Br 89(6):736–741

    CAS  Google Scholar 

  16. Harrington CF, Taylor A (2012) Metal-on-metal hip implants. UK quality assurance of blood cobalt and chromium after hip implants. BMJ 344:e4017

    Article  Google Scholar 

  17. Langton DJ, Sidaginamale R, Lord JK, Nargol AV, Joyce TJ (2012) Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res 1(4):56–63

    Google Scholar 

  18. Smith AJ et al (2012) Failure rates of metal-on-metal hip resurfacings: analysis of data from the National Joint Registry for England and Wales Lancet 380(9855):1759–1766

    Article  Google Scholar 

  19. Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80(2):268–282

    CAS  Google Scholar 

  20. Jacobs JJ et al (1995) Local and distant products from modularity. Clin Orthop Relat Res 319:94–105

    Google Scholar 

  21. De Smet K et al (2008) Metal ion measurement as a diagnostic tool to identify problems with metal-on-metal hip resurfacing. J Bone Joint Surg Am 90(Suppl 4):202–208

    Article  Google Scholar 

  22. Khan M et al (2006) Current in vivo wear of metal-on-metal bearings assessed by exercise-related rise in plasma cobalt level. J Orthop Res 24(11):2029–2035

    Article  Google Scholar 

  23. Beaule PE et al (2011) A prospective metal ion study of large-head metal-on-metal bearing: a matched-pair analysis of hip resurfacing versus total hip replacement. Orthop Clin North Am 42(2):251–257, ix

    Article  Google Scholar 

  24. Sieber HP, Rieker CB, Kottig P (1999) Analysis of 118 s-generation metal-on-metal retrieved hip implants. J Bone Joint Surg Br 81(1):46–50

    Article  CAS  Google Scholar 

  25. Tuke M et al (2010) 3D linear and volumetric wear measurement on artificial hip joints—validation of a new methodology. Precis Eng 34(4):777–783

    Article  Google Scholar 

  26. Heisel C et al (2008) Characterization of the running-in period in total hip resurfacing arthroplasty: an in vivo and in vitro metal ion analysis. J Bone Joint Surg Am 90(Suppl 3):125–133

    Article  Google Scholar 

  27. FDA. Available from: http://www.mhra.gov.uk/Publications/Safetywarnings/MedicalDeviceAlerts/CON155761http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/MetalonMetalHipImplants/default.htm

  28. MHRA. Medical Device Alert: All metal-on-metal (MoM) hip replacements (MDA/2012/036). Available from: http://www.mhra.gov.uk/Publications/Safetywarnings/MedicalDeviceAlerts/CON155761

  29. Hart AJ et al (2009) The painful metal-on-metal hip resurfacing. J Bone Joint Surg Br 91(6):738–744

    CAS  Google Scholar 

  30. Wynn-Jones H et al (2011) Silent soft tissue pathology is common with a modern metal-on-metal hip arthroplasty. Acta Orthop 82(3):301–307

    Article  Google Scholar 

  31. Langton DJ, Sidaginamale RP, Joyce TJ, Natu S, Blain P, Jefferson RD, Rushton S, Nargol AV (12 Mar 2013) The clinical implications of elevated blood metal ion concentrations in asymptomatic patients with MoM hip resurfacings: a cohort study. BMJ Open 3(3):e001541

    Google Scholar 

  32. Randelli F, Banci L, Favilla S, Maglione D, Aliprandi A (Sep 2012) Radiographically undetectable periprosthetic osteolysis with ASR implants: the implication of blood metal ions. J Arthroplasty 28(8):1259–1264.

    Google Scholar 

  33. Langton DJ et al (2010) Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg Br 92(1):38–46

    CAS  Google Scholar 

  34. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51(4):737–755

    CAS  Google Scholar 

  35. Natu S et al (2012) Adverse reactions to metal debris: histopathological features of periprosthetic soft tissue reactions seen in association with failed metal on metal hip arthroplasties. J Clin Pathol 65(5):409–418

    Article  Google Scholar 

  36. Willert HG et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am 87(1):28–36

    Article  Google Scholar 

  37. Takemura S et al (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167(2):1072–1080

    CAS  Google Scholar 

  38. Glyn-Jones S et al (2009) Risk factors for inflammatory pseudotumour formation following hip resurfacing. J Bone Joint Surg Br 91(12):1566–1574

    CAS  Google Scholar 

  39. Langton DJ et al (2008) The effect of component size and orientation on the concentrations of metal ions after resurfacing arthroplasty of the hip. J Bone Joint Surg Br 90(9):1143–1151

    CAS  Google Scholar 

  40. Williams S et al (2003) In vitro analysis of the wear, wear debris and biological activity of surface-engineered coatings for use in metal-on-metal total hip replacements. Proc Inst Mech Eng H 217(3):155–163

    CAS  Google Scholar 

  41. Howie DW et al (1993) The response to particulate debris. Orthop Clin North Am 24(4):571–581

    CAS  Google Scholar 

  42. Brown C, Fisher J, Ingham E (2006) Biological effects of clinically relevant wear particles from metal-on-metal hip prostheses. Proc Inst Mech Eng H 220(2):355–369

    Article  CAS  Google Scholar 

  43. Cooper RA et al (1992) Polyethylene debris-induced osteolysis and loosening in uncemented total hip arthroplasty. A cause of late failure. J Arthroplasty 7(3):285–290

    Article  CAS  Google Scholar 

  44. Leslie IJ, Williams S, Figgitt M, Eastaugh-Waring S, Parry M, Case P, Learmonth I, Ingham E, Fisher J (2009) In vitro comparison of wear and wear debris of two contemporary designs of surface replacement. Orthopaedic Research Society, Las Vegas, Nevada, paper 2317

    Google Scholar 

  45. Leslie IJ et al (2009) High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthop Relat Res 467(9):2259–2265

    Article  Google Scholar 

  46. National Joint Registry for England and Wales (2011) 8th Annual Report

    Google Scholar 

  47. Learmonth I (2012) Further opinion on accelerating failure rate of the ASR total hip replacement by Langton et al. J Bone Joint Surg Br 93-B:1011–1016. (Bone & Joint, 2011)

    Google Scholar 

  48. Hip and Knee Arthroplasty (2012) Australian Orthopaedic Association. National Joint Registry

    Google Scholar 

  49. Van Der Straeten C et al (2013) The 2012 Otto Aufranc Award: The interpretation of metal ion levels in unilateral and bilateral hip resurfacing. Clin Orthop Relat Res 471(2):377–385

    Article  Google Scholar 

  50. Malek IA et al (2012) The sensitivity, specificity and predictive values of raised plasma metal ion levels in the diagnosis of adverse reaction to metal debris in symptomatic patients with a metal-on-metal arthroplasty of the hip. J Bone Joint Surg Br 94(8):1045–1050

    CAS  Google Scholar 

  51. National Joint Registry for England and Wales: ninth annual report (2012)

    Google Scholar 

  52. Garbuz DS et al (2010) The John Charnley Award: metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 468(2):318–325

    Article  Google Scholar 

  53. Langton DJ et al (2011) Accelerating failure rate of the ASR total hip replacement. J Bone Joint Surg Br 93(8):1011–1016

    CAS  Google Scholar 

  54. Malviya A et al (2011) What advantage is there to be gained using large modular metal-on-metal bearings in routine primary hip replacement? A preliminary report of a prospective randomised controlled trial. J Bone Joint Surg Br 93(12):1602–1609

    CAS  Google Scholar 

  55. Cooper HJ et al (2012) Corrosion at the head–neck taper as a cause for adverse local tissue reactions after total hip arthroplasty. J Bone Joint Surg Am 94(18):1655–1661

    Article  Google Scholar 

  56. Langton DJ et al (2012) Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res 1(4):56–63

    Article  CAS  Google Scholar 

  57. Dyrkacz RM et al (2013) The influence of head size on corrosion and fretting behaviour at the head–neck interface of artificial hip joints. J Arthroplasty 28(6):1036–1040

    Article  Google Scholar 

  58. Vundelinckx BJ, Verhelst LA, De Schepper J (Aug 2013) Taper corrosion in modular hip prostheses: analysis of serum metal ions in 19 patients. J Arthroplasty 28(7):1218–1223

    Google Scholar 

  59. Moharrami N, Langton DJ, Sayginer O, Bull SJ (in press) Why does titanium alloy wear cobalt chrome alloy despite lower bulk hardness: a nanoindentation study? Thin Solid Films

    Google Scholar 

  60. Reito A, Puolakka T, Elo P, Pajamäki J, Eskelinen A (Sep 2013) High prevalence of adverse reactions to metal debris in small-headed ASR™ hips. Clin Orthop Relat Res 471(9):2954–2961.

    Google Scholar 

  61. Bolland BJ et al (2011) High failure rates with a large-diameter hybrid metal-on-metal total hip replacement: clinical, radiological and retrieval analysis. J Bone Joint Surg Br 93(5):608–615

    CAS  Google Scholar 

  62. Matthies AK et al (2012) Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res 470(7):1895–1906

    Article  Google Scholar 

  63. Underwood R et al (2011) A comparison of explanted articular surface replacement and birmingham hip resurfacing components. J Bone Joint Surg Br 93(9):1169–1177

    CAS  Google Scholar 

  64. Jauch SY et al (2013) Micromotions at the taper interface between stem and neck adapter of a bimodular hip prosthesis during activities of daily living. J Orthop Res 31(8):1165–1171

    Article  CAS  Google Scholar 

  65. Wroblewski BM, Siney PD, Fleming PA (2012) Microseparation, fluid pressure and flow in failures of metal-on-metal hip resurfacing arthroplasties. Bone Joint Res 1(3):25–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Langton MRCS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Langton, D. (2014). Are Metal Ion Levels a Trigger for Surgical Intervention?. In: Jones, L., Haggard, W., Greenwald, A. (eds) Metal-on-Metal Bearings. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8999-3_5

Download citation

Publish with us

Policies and ethics