Skip to main content

Carbon Nanotubes: From Synthesis to Genotoxicity

  • Chapter
  • First Online:
Nanotoxicology

Abstract

Massive industrial production of carbon nanotubes (CNTs) is increasing year after year, and it is urgent to address their safety-related issues. Due to their morphological similarities with asbestos fibers, which are classical carcinogenic materials, these CNTs have been considered as hazardous manufactured products by regulatory agencies. In this context, genotoxic effects of CNTs and the mechanisms proposed in current literature are reviewed and discussed in this chapter. Relevant aspects of preparation and physicochemical characterization of CNTs in toxicological context as well as the recent perspectives involving cytotoxicity assessment are also highlighted. Finally, this chapter aims to contribute to point out to a proactive discussion towards a responsible and sustainable development of nanotechnology lined up with environmental, health, and safety (EH&S) requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447(7148):1066–1068

    PubMed  CAS  Google Scholar 

  • Akbar S, Taimoor AA (2009) Functionalization of carbon nanotubes: manufacturing techniques and properties of customized nanocomponents for molecular-level technology. Recent Pat Nanotechnol 3(2):154–161

    PubMed  CAS  Google Scholar 

  • Alberts B, Lewis J, Roberts RM, Walter P (eds) (2007) Molecular biology of the cell, 5th edn. Garland Science, New York, NY

    Google Scholar 

  • Asakura M, Sasaki T, Sugiyama T et al (2010) Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured chinese hamster lung cells in comparison with chrysotile A fibers. J Occup Health 52(3):9–20

    Google Scholar 

  • Aschberger K, Johnston HJ, Stone V et al (2010) Review of carbon nanotubes toxicity and exposure- appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 40(9):759–790

    PubMed  CAS  Google Scholar 

  • Avti PK, Hu S, Favazza C et al (2012) Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy. PLoS One 7(4):e35064

    PubMed  CAS  Google Scholar 

  • Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5(10):1616–1636

    PubMed  CAS  Google Scholar 

  • Balasubramanian K, Burghard M (eds) (2010) Carbon nanotubes: methods and protocols. In: Methods in molecular biology, vol 625. Humana Press, New York, NY

    Google Scholar 

  • Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mat Sci Eng B Solid 119(2):105–118

    Google Scholar 

  • Benincasa M, Pacor S, Wu W et al (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5(1):199–208

    PubMed  CAS  Google Scholar 

  • Berhanu D, Dybowska A, Misra SK et al (2009) Characterisation of carbon nanotubes in the context of toxicity studies. Environ Health 8(suppl 1):S3. doi:10.1186/1476-069X

    PubMed  Google Scholar 

  • Bom D, Andrews R, Jacques D et al (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2(6):615–619

    CAS  Google Scholar 

  • Brown DM, Kinloch IA, Bangert U et al (2007) An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45(9):1743–1756

    CAS  Google Scholar 

  • Bussy C, Pinault M, Cambedouzou J et al (2012) Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part Fibre Toxicol 9:46. doi:10.1186/1743-8977-9-46

    PubMed  CAS  Google Scholar 

  • Cai X, Ramalingam R, Wong HS et al (2013) Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomedicine 9(5):583–593. doi:10.1016/j.nano.2012.09.004

    PubMed  CAS  Google Scholar 

  • Campbell NA, Reece JB, Mitchell LG (1999) Biology, 5th edn. Benjamin Cummings, Menlo Park, CA

    Google Scholar 

  • Campos-Delgado J, Maciel IO, Cullem DA et al (2010) Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes. ACS Nano 4(3):1696–1702

    PubMed  CAS  Google Scholar 

  • Casey A, Davoren M, Herzog E et al (2007) Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing. Carbon 45(1):34–40

    CAS  Google Scholar 

  • Castranova V, Schulte PA, Zumwalde RD (2013) Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 46(3):642–649

    PubMed  CAS  Google Scholar 

  • Cavallo D, Fanizza C, Ursini CL et al (2012) Multi-walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J Appl Toxicol 32(6):454–464

    PubMed  CAS  Google Scholar 

  • Cellot G, Cilia E, Cipollone S et al (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4(2):126–133

    PubMed  CAS  Google Scholar 

  • Chattopadhyay D, Galeska I, Papadimitrakopoulos F et al (2002) Complete elimination of metal catalysts from single wall carbon nanotubes. Carbon 40(7):985–988

    CAS  Google Scholar 

  • Chen Y, Qu K, Zhao C et al (2012) Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun 3:1074. doi:10.1038/ncomms2091

    PubMed  Google Scholar 

  • Cheng J, Chan CM, Veca LM et al (2009a) Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235(2):216–225

    PubMed  CAS  Google Scholar 

  • Cheng C, Müller KH, Koziol KK (2009b) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25):4152–4160

    PubMed  CAS  Google Scholar 

  • Cheng W-W, Lin Z-Q, Wei B-F et al (2013) Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: reactive oxygen species are involved in the mitochondrial pathway. Int J Biochem Cell Biol 43(4):564–572

    Google Scholar 

  • Cicchetti R, Divizia M, Valentini F et al (2011) Effects of single-wall carbon nanotubes in human cells of the oral cavity: geno-cytotoxic risk. Toxicol In Vitro 25(8):1811–1819

    PubMed  CAS  Google Scholar 

  • Cui HF, Vashist SK, Al-Rubeaan K et al (2010) Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol 23(7):1131–1147

    PubMed  CAS  Google Scholar 

  • Cveticanin J, Joksic G, Leskovac A et al (2010) Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology 21(1):015102. doi:10.1088/0957

    PubMed  Google Scholar 

  • Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044

    PubMed  CAS  Google Scholar 

  • Datsyuk V, Kalyva M, Papagelis K et al (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840

    CAS  Google Scholar 

  • Del Canto E, Flavin K, Movia D et al (2011) Critical investigation of defect site functionalization on single-walled carbon nanotubes. Chem Mater 23(1):67–74

    Google Scholar 

  • Di Giorgio ML, Di Bucchianico S, Ragnelli AM et al (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722(1):20–31

    PubMed  Google Scholar 

  • Di Sotto A, Chiaretti M, Carru GA et al (2009) Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett 184:192–197

    PubMed  Google Scholar 

  • Doak SH, Manshian B, Jenkins GJ et al (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745(1–2):104–111

    PubMed  CAS  Google Scholar 

  • Dolash BD, Lahiji RR, Zemlyanov DY et al (2013) Sonication mediated covalent cross-linking of DNA to single-walled carbon nanotubes. Chem Phys 413:11–19. doi:10.1016/j.chemphys.2012.07. 004

    CAS  Google Scholar 

  • Donaldson K (2012) The toxicology of carbon nanotubes. Cambridge University Press, New York

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Jorio A et al (2002) Single nanotube Raman spectroscopy. Acc Chem Res 35(12):1070–1078

    PubMed  CAS  Google Scholar 

  • Dresselhaus MS, Jorio A, Souza Filho AG et al (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil Trans A Math Phys Eng Sci 368(1932):5355–5377

    CAS  Google Scholar 

  • Dutta D, Sundaram SK, Teeguarden JG et al (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100(1):303–315

    PubMed  CAS  Google Scholar 

  • Edwards SL, Werkmeister JA, Ramshaw JA et al (2009) Carbon nanotubes in scaffolds for tissue engineering. Expert Rev Med Devices 6(5):499–505

    PubMed  CAS  Google Scholar 

  • Ema M, Imamura T, Suzuki H et al (2012a) Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol 63:188–95

    PubMed  CAS  Google Scholar 

  • Ema M, Imamura T, Suzuki H et al (2012b) Genotoxicity evaluation for single-walled carbon nanotubes in a battery of in vitro and in vivo assays. J Appl Toxicol 33:933–9

    PubMed  Google Scholar 

  • Endo M (1988) Grow carbon fibers in the vapor phase. Chem Technol 18:568–576

    CAS  Google Scholar 

  • Endo M, Takeuchi K, Hiraoka T et al (1997) Stacking nature of graphene layers in carbon nanotubes and nanofibres. J Phys Chem Solids 58(11):1707–1712

    CAS  Google Scholar 

  • Faria AF, Martinez DST, Moraes ACM et al (2012) Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem Mater 24(21):4080–4087

    CAS  Google Scholar 

  • Feng W, Ji P (2001) Enzymes immobilized on carbon nanotubes. Biotechnol Adv 29(6):889–895

    Google Scholar 

  • Firme CP, Bandaru PR (2010) Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6(2):245–256

    PubMed  CAS  Google Scholar 

  • Folkmann JK, Risom L, Jacobsen NR et al (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C-60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703–708

    PubMed  CAS  Google Scholar 

  • Franchi LP, Santos RA, Matsubara EY et al (2012) Citotoxicidade e genotoxicidade de nanotubos de carbono. Quím Nova 35:571–580

    CAS  Google Scholar 

  • Freiman S, Hooker S, Migler K et al., (2008) Messurent issues in single wall carbon nanotubes. National Institute of Standards and Technology (NIST). Special Publication, 960–019

    Google Scholar 

  • George S, Xia T, Rallo R et al (2011) Use of a high-throughput screening approach coupled with In vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3):1805–1817

    PubMed  CAS  Google Scholar 

  • Ghosh M, Chakraborty A, Bandyopadhyay M et al (2011) Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336

    PubMed  CAS  Google Scholar 

  • Gibbs-Flournoy EA, Bromberg PA, Hofer TP et al (2011) Darkfield-confocal microscopy detection of nanoscale particle internalization by human lung cells. Part Fibre Toxicol 8(1):2. doi:10.1186/1743-8977-8-2

    PubMed  CAS  Google Scholar 

  • Gommes C, Blacher S, Dupont- Pavlovsky N et al (2004) Comparison of different methods for characterizing multi-walled carbon nanotubes. Colloids Surf A Phys Eng Aspects 241(1–3):155–164

    CAS  Google Scholar 

  • Gonzalez L, Sanderson BJS, Kirsch-Volders M (2011) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 26(1):185–191

    PubMed  CAS  Google Scholar 

  • Grobert N (2007) Carbon nanotubes—becoming clean. Mater Today 10(1–2):28–35

    CAS  Google Scholar 

  • Guo YY, Zhang J, Zheng YF et al (2011) Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res 721(2):184–191

    PubMed  CAS  Google Scholar 

  • Haniu H, Matsuda Y, Takeuchi K et al (2010) Proteomics-based safety evaluation of multi-walled carbon nanotubes. Toxicol Appl Pharmacol 242(3):256–262

    PubMed  CAS  Google Scholar 

  • Hayashida T, Umemura K (2013) Surface morphology of hybrids of double-stranded DNA and single-walled carbon nanotubes studied by atomic force microscopy. Colloids Surf B Biointerfaces 101:49–54

    PubMed  CAS  Google Scholar 

  • Heister E, Brunner EW, Gregg R et al (2013) Are carbon nanotubes a natural solution? Applications in Biology and Medicine. ACS Appl Mater Interfaces 5(6):1870–1891

    PubMed  CAS  Google Scholar 

  • Hou PX, Liu C, Cheng HM (2008) Purification of carbon nanotubes. Carbon 46(15):2003–2025

    CAS  Google Scholar 

  • Hull MS, Kennedy AJ, Steevens JA et al (2009) Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ Sci Technol 43(11):4169–4174

    PubMed  CAS  Google Scholar 

  • Hussain SM, Braydich-Stolle LK, Schrand AM et al (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21(16):1549–1559

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  • Itkis ME, Perea DE, Jung R et al (2005) Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc 127:3439–3448

    PubMed  CAS  Google Scholar 

  • Jacobsen NR, Pojana G, White P et al (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta™Mouse lung epithelial cells. Environ Mol Mutagen 49(6):476–487

    PubMed  CAS  Google Scholar 

  • Jacobsen NR, Moller P, Jersen KA et al (2009) Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE(-/-) mice. Part Fibre Toxicol 6:2. doi:10.1186/1743-8977-6-2

    PubMed  Google Scholar 

  • Jain S, Thakare VS, Das M et al (2011) Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 24(11):2028–2039

    PubMed  CAS  Google Scholar 

  • Jiang LQ, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94

    PubMed  CAS  Google Scholar 

  • Johnston HJ, Hutchison GR, Christensen FM et al (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246

    PubMed  CAS  Google Scholar 

  • Jorio A, Dresselhaus G, Dresselhaus MS (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties, and applications. Springer, Berlin

    Google Scholar 

  • Kadenbach B, Ramzan R, Vogt S (2013) High efficiency versus maximal performance—the cause of oxidative stress in eukaryotes: a hypothesis. Mitochondrion 13(1):1–6

    PubMed  CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA et al (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165(1):88–100

    PubMed  CAS  Google Scholar 

  • Kam NWS, Dai H (2006) Single walled carbon nanotubes for transport and delivery of biological cargos. Phys Status Solidi 243(13):3561

    CAS  Google Scholar 

  • Kam NWS, Liu ZA, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 45(4):577–581

    PubMed  CAS  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653

    PubMed  CAS  Google Scholar 

  • Karajanagi SS, Vertegel AA, Kane RS et al (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20(26):11594–11599

    PubMed  CAS  Google Scholar 

  • Karlsson H (2010) The comet assay in nanotoxicology research. Anal Bioanal Chem 398(2):651–666

    PubMed  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    PubMed  CAS  Google Scholar 

  • Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397

    PubMed  CAS  Google Scholar 

  • Kato T, Totsuka Y, Ishino K et al (2013) Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology 7(4):452–461. doi:10.3109/17435390.2012.674571

    PubMed  CAS  Google Scholar 

  • Katwa P, Wang X, Urankar RN et al (2012) A carbon nanotube toxicity paradigm driven by mast cells and the IL-33/ST2 axis. Small 8(18):2904–2912

    PubMed  CAS  Google Scholar 

  • Kim JS, Sung JH, Song KS et al (2012a) Persistent DNA damage measured by comet assay of sprague dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTs) generated by new MWCNT aerosol generation system. Toxicol Sci 128(2):439–448

    PubMed  CAS  Google Scholar 

  • Kim SW, Kim T, Kim YS et al (2012b) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1):3–33

    CAS  Google Scholar 

  • Kingston CT, Martinez-Rubi Y, Guan J et al (2010) Coupled thermogravimetry, mass spectrometry, and infrared spectroscopy for quantification of surface functionality on single-walled carbon nanotubes. Anal Bioanal Chem 396(3):1037–1044

    PubMed  CAS  Google Scholar 

  • Kisin ER, Murray AR, Keane MJ et al (2007) Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 70:2071–2079

    PubMed  CAS  Google Scholar 

  • Kisin ER, Murray AR, Sargent L et al (2011) Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252(1):1–10

    PubMed  CAS  Google Scholar 

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50(6):1260–1278

    CAS  Google Scholar 

  • Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758

    PubMed  CAS  Google Scholar 

  • Kundu S, Wang YM, Xia M et al (2008) Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C 112(43):16869–16878

    CAS  Google Scholar 

  • Lacerda L, Bianco A, Prato M et al (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58(14):1460–1470

    PubMed  CAS  Google Scholar 

  • Laurent S, Burtea C, Thirifays C et al (2012) Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “Cell Vision”. PLoS One 7(1):306–314

    Google Scholar 

  • Lehman JH, Terrones M, Mansfield E et al (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602

    CAS  Google Scholar 

  • Lelimousin M, Sansom MS (2013) Membrane pertubation by carbon nanotube insertion: pathways to internalization. Small, http://onlinelibrary.wiley.com/doi/10.1002/smll.201202640/citedby

  • Li MH, Huang CP (2011) The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: effect of physical-chemical treatment. Carbon 49(5):1672–1679

    CAS  Google Scholar 

  • Li YM, Kim W, Zhang Y et al (2001) Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B 105(46):11424–11431

    CAS  Google Scholar 

  • Li ZJ, Pan ZW, Dai S (2004) Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. J Colloid Interface Sci 277(1):35–42

    PubMed  CAS  Google Scholar 

  • Li X, Peng YH, Qu X (2006a) Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res 34(13):3670–3676

    PubMed  CAS  Google Scholar 

  • Li X, Peng YH, Ren J et al (2006b) Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. Proc Natl Acad Sci U S A 103(52):19658–19663

    PubMed  CAS  Google Scholar 

  • Li R, Wang X, Ji Z et al (2013) The surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7(3):2352–2368. doi:10.1021/nn305567s

    PubMed  CAS  Google Scholar 

  • Lima AMF, Musumeci AW, Waclawik ER et al (2009) Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability. J Therm Anal Calorim 97(1):257–263

    CAS  Google Scholar 

  • Lindberg HK, Falck GC, Suhonen S et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186(3):166–173

    PubMed  CAS  Google Scholar 

  • Lindberg HK, Falck GC, Singh R et al (2012) Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology http://www.sciencedirect.com/science/article/pii/S0300483X12004271#. doi:10.1016/j.tox.2012.12.008

  • Liu Z, Tabakman S, Welsher K et al (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    PubMed  CAS  Google Scholar 

  • Liu HL, Zhang YL, Yang N et al (2011) A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis 2:E159. doi:10.1038/cddis.2011.27

    PubMed  Google Scholar 

  • Liu Y, Zhao Y, Sun B et al (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713

    PubMed  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC et al (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899

    PubMed  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105(38):14265–14270

    PubMed  CAS  Google Scholar 

  • Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4(9):546–547

    PubMed  CAS  Google Scholar 

  • Ma PC, Siddiqui NA, Marom G et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites A 41(10):1345–1367

    Google Scholar 

  • Mahmoudi M, Saeedi-Eslami SN, Shokrgozar MA et al (2012) Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale 4(17):5461–5468

    PubMed  CAS  Google Scholar 

  • Makarucha AJ, Todorova N, Yarovsky I (2011) Nanomaterials in biological environment: a review of computer modelling studies. Eur Biophys J 40(2):103–115

    PubMed  CAS  Google Scholar 

  • Manshian BB, Jenkins GJ, Williams PM et al (2013) Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology 7:144–156

    PubMed  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    PubMed  CAS  Google Scholar 

  • McShan D, Yu H (2012) DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization. Toxicol Ind Health 25:1–10

    Google Scholar 

  • Mello PA, Rodrigues LF, Nunes et al (2011) Determination of metal impurities in carbon nanotubes by direct solid sampling electrothermal atomic absorption spectrometry. J Braz Chem Soc 22(6):1040–1049

    CAS  Google Scholar 

  • Menard-Moyon C, Kostarelos K, Prato M et al (2010) Functionalized carbon nanotubes for probing and modulating molecular functions. Chem Biol 17(2):107–115

    PubMed  CAS  Google Scholar 

  • Migliore L, Saracino D, Bonelli A et al (2010) Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen 51(4):294–303

    PubMed  CAS  Google Scholar 

  • Moghimi SM, Hunter AC (2010) Complement monitoring of carbon nanotubes. Nat Nanotechnol 5(6):382–383

    PubMed  CAS  Google Scholar 

  • Moller P, Folkmann JK, Danielsen PH et al (2012) Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles. Curr Mol Med 12(6):732–745

    PubMed  CAS  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    PubMed  CAS  Google Scholar 

  • Mouchet F, Landois P, Sarremejean E et al (2008) Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87(2):127–137

    PubMed  CAS  Google Scholar 

  • Mouchet F, Landois P, Puech P et al (2010) Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes. Nanomedicine 5(6):963–974

    PubMed  CAS  Google Scholar 

  • Muller J, Decordier I, Hoet PH et al (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29(2):427–433

    PubMed  CAS  Google Scholar 

  • Murray AR, Kisin ER, Tkach AV et al (2012) Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol 9(10):1–19

    Google Scholar 

  • Nagai H, Toyokuni S (2012) Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci 103(8):1378–1390

    PubMed  CAS  Google Scholar 

  • Nam CW, Kang SJ, Kang YK et al (2011) Cell growth inhibition and apoptosis by SDS-solubilized single-walled carbon nanotubes in normal rat kidney epithelial cells. Arch Pharm Res 34(4):661–669

    PubMed  CAS  Google Scholar 

  • Naya M, Kobayashi N, Mizuno K et al (2011) Evaluation of the genotoxic potential of single-wall carbon nanotubes by using a battery of in vitro and in vivo genotoxicity assays. Regul Toxicol Pharmacol 61: 192-8

    PubMed  CAS  Google Scholar 

  • Nayak TR, Jian L, Phua LC et al (2010) Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4(12):7717–7725

    PubMed  CAS  Google Scholar 

  • Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    PubMed  CAS  Google Scholar 

  • Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2(8):1306–1323

    PubMed  CAS  Google Scholar 

  • Ogasawara Y, Umezu N, Ishii K (2012) DNA damage in human pleural mesothelial cells induced by exposure to carbon nanotubes. Nihon Eiseigaku Zasshi 67(1):76–83

    PubMed  CAS  Google Scholar 

  • Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38(6):728–736

    CAS  Google Scholar 

  • Pacurari M, Yin XJ, Ding M et al (2008a) Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Nanotoxicology 2(3):155–170

    CAS  Google Scholar 

  • Pacurari M, Yin XJ, Zhao J et al (2008b) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9):1211–1217

    PubMed  CAS  Google Scholar 

  • Palomaki J, Valimaki E, Sund J et al (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5(9):6861–6870

    PubMed  CAS  Google Scholar 

  • Pantarotto D, Briand JP, Prato M et al (2004a) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 1:16–17

    Google Scholar 

  • Pantarotto D, Singh R, McCarthy D et al (2004b) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43(39):5242–5246

    CAS  Google Scholar 

  • Parry JM, Parry EM (2012) Genetic toxicology: principles and methods. Humana Press, New York, NY

    Google Scholar 

  • Patlolla AK, Hussain SM, Schlager JJ et al (2010) Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of swiss-webster mice. Environ Toxicol 25(6):608–621

    PubMed  CAS  Google Scholar 

  • Paula AJ, Stefani D, Souza Filho AG et al (2011) Surface chemistry in the process of coating mesoporous SiO(2) onto carbon nanotubes driven by the formation of SiOC bonds. Chemistry 17(11):3228–3237

    PubMed  CAS  Google Scholar 

  • Pelka J, Gehrke H, Rechel A et al (2013) DNA damaging properties of single walled carbon nanotubes in human colon carcinoma cells. Nanotoxicology 7:2–20

    PubMed  CAS  Google Scholar 

  • Petersen EJ, Henry TB (2012) Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review. Environ Toxicol Chem 31(1):60–72

    PubMed  CAS  Google Scholar 

  • Ponti J, Broggi F, Mariani V et al (2013) Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential. Nanotoxicology 7:221–233

    PubMed  CAS  Google Scholar 

  • Porter AE, Gass M, Muller K et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    PubMed  CAS  Google Scholar 

  • Premkumar T, Mezzenga R, Geckeler KE (2012) Carbon nanotubes in the liquid phase: addressing the issue of dispersion. Small 8(9):1299–1313

    PubMed  CAS  Google Scholar 

  • Raffa V, Ciofani G, Nitoda S et al (2008) Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46(12):1600–1610

    CAS  Google Scholar 

  • Raffa V, Ciofani G, Vittorio O et al (2010) Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine 5(1):89–97

    PubMed  CAS  Google Scholar 

  • Raymundo-Pinero E, Cazorla-Amoros A, Linares- Solano A et al (2002) High surface area carbon nanotubes prepared by chemical activation. Carbon 40(9):1614–1617

    CAS  Google Scholar 

  • Rodriguez-Fernandez L, Valiente R, Gonzalez J et al (2012) Multiwalled carbon nanotubes display microtubule biomimetic properties in vivo, enhancing microtubule assembly and stabilization. ACS Nano 6(8):6614–6625

    PubMed  CAS  Google Scholar 

  • Romanos GE, Likodimos V, Marques RRN et al (2011) Controlling and quantifying oxygen functionalities on hydrothermally and thermally treated single-wall carbon nanotubes. J Phys Chem C 115(17):8534–8546

    CAS  Google Scholar 

  • Ruan G, Agrawal A, Marcus AI et al (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129(47):14759–14766

    PubMed  CAS  Google Scholar 

  • Saito Y, Yoshikawa T, Bandow S et al (1993) Interlayer spacings in carbon nanotubes. Phys Rev B 48(3):1907–1909

    CAS  Google Scholar 

  • Salzmann CG, Llewellyn SA, Tobias G et al (2007) The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv Mater 19(6):883–887

    CAS  Google Scholar 

  • Samori C, Sainz R, Ménard- Moyon C et al (2010) Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes. Carbon 48(9):2447–2454

    CAS  Google Scholar 

  • Sargent LM, Shvedova AA, Hubbs AF et al (2009) Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen 50(8):708–717

    PubMed  CAS  Google Scholar 

  • Sargent LM, Hubbs AF, Young SH et al (2012) Single-walled carbon nanotube-induced mitotic disruption. Mutat Res 745(1–2):28–37

    PubMed  CAS  Google Scholar 

  • Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23(3):646–657

    CAS  Google Scholar 

  • Schulte PA, Kuempel ED, Zumwalde RD et al (2012) Focused actions to protect carbon nanotube workers. Am J Ind Med 55(5):395–411

    PubMed  CAS  Google Scholar 

  • Schweinberger FF, Meyer-Plath A (2011) Status of characterization techniques for carbon nanotubes and suggestions towards standards suitable for toxicological assessment. J Phys Conf Ser 304:1–10

    Google Scholar 

  • Scott-Fordsmand JJ, Krogh PH, Schaefer M et al (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71(3):616–619

    PubMed  CAS  Google Scholar 

  • Senanayake V, Juurlink BH, Zhang C et al (2008) Do surface defects and modification determine the observed toxicity of carbon nanotubes? J Biomed Nanotechnol 4(4):515–523

    CAS  Google Scholar 

  • Shahab U, Moinuddin, Ahmad S et al (2013) Genotoxic effect of N-hydroxy-4-acetylaminobiphenyl on human DNA: implications in bladder cancer. PLoS One 8(1):e53205

    PubMed  CAS  Google Scholar 

  • Shvedova AA, Kisin E, Murray AR et al (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4):L552–L565

    PubMed  CAS  Google Scholar 

  • Shvedova AA, Pietroiusti A, Fadeel D et al (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261(2):121–133

    PubMed  CAS  Google Scholar 

  • Silva G, Musumeci A, Gome A et al (2009) Characterization of commercial double-walled carbon nanotube material: composition, structure, and heat capacity. J Mater Sci 44(13):3498–3503

    CAS  Google Scholar 

  • Singh N, Manshian BB, Jenkins GJ et al (2009) Nano genotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914

    PubMed  CAS  Google Scholar 

  • Srivastava RK, Rahman Q, Kashyap MP et al (2011) Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549. PLoS One 6(9):e25767

    PubMed  CAS  Google Scholar 

  • Stéfani D, Paula AJ, Vaz BG et al (2011) Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes. J Hazard Mater 189(1–2):391–396

    PubMed  Google Scholar 

  • Stella GM (2011) Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases 6(2):P1–P17

    PubMed  CAS  Google Scholar 

  • Szendi K, Varga C (2008) Lack of genotoxicity of carbon nanotubes in a pilot study. Anticancer Res 28(1A):349–352

    PubMed  CAS  Google Scholar 

  • Taylor AA, Aron GM, Beall GW et al (2012) Carbon and clay nanoparticles induce minimal stress responses in gram negative bacteria and eukaryotic fish cells. Environ Toxicol. doi:10.1002/tox.21824

    PubMed  Google Scholar 

  • Thayer AM (2007) Carbon nanotubes by the metricton. Chem Eng News 85(46):29–30

    Google Scholar 

  • Thien-Nga L, Bonard JM, Richard G et al (2002) Comparison of catalytically grown and arc-discharge carbon nanotube tips. Appl Phys Lett 80(5):850–852

    CAS  Google Scholar 

  • Thomas CR, George S, Host AM et al (2011) Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5(1):13–20

    PubMed  CAS  Google Scholar 

  • Tobia G, Shao L, Ballesteros B et al (2009) Enhanced sidewall functionalization of single-wall carbon nanotubes using nitric acid. J Nanosci Nanotechnol 9(10):6072–6077

    Google Scholar 

  • Trigueiro JPC, Silva GG, Laval RL (2007) Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods. J Nanosci Nanotechnol 7(10):3477–3486

    PubMed  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181

    PubMed  CAS  Google Scholar 

  • Tyurina YY, Kisin ER, Murray A et al (2011) Global phospholipidomics analysis reveals selective pulmonary peroxidation profiles upon inhalation of single-walled carbon nanotubes. ACS Nano 5(9):7342–7353

    PubMed  CAS  Google Scholar 

  • Umbuzeiro GA, Coluci VR, Honório JG et al (2011) Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments. TRAC Trend Anal Chem 30(3):437–446

    CAS  Google Scholar 

  • Ursini CL, Cavallo D, Fresegna AM et al (2012) Comparative cyto-genotoxicity assessment of functionalized and pristine multiwalled carbon nanotubes on human lung epithelial cells. Toxicol In Vitro 26(6):831–840

    PubMed  CAS  Google Scholar 

  • van Berlo D, Clift M, Albrecht C et al (2012) Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Wkly 142:w13698. doi:10.4414/smw.2012.13698

    PubMed  Google Scholar 

  • Verdejo R, Lamoriniere S, Cottam B et al (2007) Removal of oxidation debris from multi-walled carbon nanotubes. Chem Commun 5:513–515

    Google Scholar 

  • Wang ZW, Shirley MD, Meikle ST et al (2009) The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon 47(1):73–79

    CAS  Google Scholar 

  • Wang Q, Zhou LY, Jiang et al (2011) Improved stability of the carbon nanotubes-enzyme bioconjugates by biomimetic silicification. Enzyme Microb Technol 49(1):11–16

    PubMed  Google Scholar 

  • Wang J, Sun P, Bao Y et al (2012a) Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol In Vitro 26(1):32–41

    PubMed  Google Scholar 

  • Wang X, Guo J, Chen T et al (2012b) Multi-walled carbon nanotubes induce apoptosis via mitocondrial pathway and scavenger receptor. Toxicol In Vitro 26(6):799–806

    PubMed  CAS  Google Scholar 

  • Wepasnick KA, Smith BA, Bitter JL et al (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014

    PubMed  CAS  Google Scholar 

  • Wepasnick KA, Smith BA, Schrote KE et al (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1):24–36

    CAS  Google Scholar 

  • Wirnitzer U, Herbold B, Voetz M et al (2009) Studies on the in vitro genotoxicity of baytubes®, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett 186:160–165

    PubMed  CAS  Google Scholar 

  • Worsley KA, Kalinina I, Bekyarova E et al (2009) Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. J Am Chem Soc 131(50):18153–18158

    PubMed  CAS  Google Scholar 

  • Wu N, Wang Q, Arash B (2012) Ejection of DNA molecules from carbon nanotubes. Carbon 50(13):4945–4952

    CAS  Google Scholar 

  • Xu J, Futakuchi M, Shimizu H et al (2012) Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci 103(12):2045–2050

    PubMed  CAS  Google Scholar 

  • Yang H, Liu C, Yang D et al (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78

    PubMed  Google Scholar 

  • Yang W, Ratinac KR, Ringer SP et al (2010a) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138

    CAS  Google Scholar 

  • Yang Z, Zhang Y, Yang Y et al (2010b) Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6(3):427–441

    PubMed  CAS  Google Scholar 

  • Ying LS, Salleh MAM, Hamdan BM et al (2011) Continuous production of carbon nanotubes—a review. J Ind Eng Chem 17(3):367–376

    CAS  Google Scholar 

  • Zeni O, Palumbo R, Bernini R et al (2008) Cytotoxicity investigation on cultured human blood cells treated with single-wall carbon nanotubes. Sensors 8(1):488–499

    CAS  Google Scholar 

  • Zhang LW, Monteiro-Riviere NA (2010) Lectins modulate multi-walled carbon nanotubes cellular uptake in human epidermal keratinocytes. Toxicol In Vitro 24(2):546–551

    PubMed  CAS  Google Scholar 

  • Zhang Y, Iijima S, Shi Z et al (1999) Defects in arc-discharge-produced single-walled carbon nanotubes. Philos Mag Lett 79(7):473–479

    CAS  Google Scholar 

  • Zhu L, Chang DW, Dai L et al (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7(12):3592–3597

    PubMed  CAS  Google Scholar 

  • Zhu X, Zhu L, Chen Y et al (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75

    CAS  Google Scholar 

Download references

Acknowledgments

D.S.T.M. and O.L.A. thank INCT-Inomat and Brazilian Nanotoxicology Network—CIGENANOTOX; L.P.F. and C.M.F. acknowledge the FAPESP for doctorate fellowships; O.P.F. and A.G.S.F. acknowledge CNPq, FUNCAP, PRONEX, INCT-NanoBioSimes, and Núcleo de Estudos em Nanoestruturas de Carbono; D.S.T.M. and A.G.S.F. thank the European Union Seventh Framework Programme (FP7) Small Collaborative project, Neuronano (NMP4-SL-2008-214547); A.G.S.F. and O.L.A. thank PROCAD-CAPES program. The authors thank Prof Dr Gisela A. Umbuzeiro for discussions and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Stéfani T. Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinez, D.S.T. et al. (2014). Carbon Nanotubes: From Synthesis to Genotoxicity. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_6

Download citation

Publish with us

Policies and ethics