Skip to main content

Assessing the Erythrocyte Toxicity of Nanomaterials: From Current Methods to Biomolecular Surface Chemistry Interactions

  • Chapter
  • First Online:
Nanotoxicology

Abstract

The challenge of nanotoxicology implies development of new methods and improvements of current ones to study the interface of nanomaterials and toxicological science. The nanoscale of materials provides new insights regarding their effects to cells, tissues, and organisms. The blood biocompatibility of nanomaterials is in the light of medical applications and hemolysis assay is pointed out as an important tool to bring toxicological information. Cell membrane disruption by nanomaterials is easily detected by free hemoglobin from red blood cells (RBCs), called erythrocytes. Moreover, nanomaterials’ physicochemical properties play a key role for understanding erythrocyte toxicity as well as their biomolecular surface chemistry interactions in biological fluids. In this way, this chapter aims to give an overview of nanomaterials toxicity to RBCs, focusing the current methods in nanotoxicology and exploring the advances in bionanointerface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Ashby MF, Ferreira PJ, Schodek DL (2009) Nanomaterials, nanotechnologies and design: an introduction for engineers and architect, 1st edn. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  • ASTM (2008) Standard test method for analysis of hemolytic properties of nanoparticles E2524-08

    Google Scholar 

  • Barshtein G, Arbell D, Yedgar S (2011) Hemolytic effect of polymeric nanoparticles: role of albumin. IEEE Trans Nanobioscience 10(4):259–261

    Article  PubMed  CAS  Google Scholar 

  • Brazhe NA, Abdali S, Brazhe AR et al (2009) New insight into erythrocyte through in vivo surface-enhanced raman spectroscopy. Biophys J 97(12):3206–3214

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Das P, Bag S et al (2011) Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3:1533–1540

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Reipa V, Hitchins VM et al (2011) Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 123(1):133–143

    Article  PubMed  CAS  Google Scholar 

  • Creanga DE, Culea M, Nadejde C et al (2009) Magnetic nanoparticle effects on the red blood cell. J Phys Conf 170(1):1–5

    Google Scholar 

  • Dobrovolskaia MA, Clogston JD, Neun BW et al (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8(8):2180–2187

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolskaia MA, Patri AK, Zheng J et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein biding profiles. Nanomedicine 5:106–117

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother A, Fairbrother JR (2009) Are environmental regulations keeping up with innovation? a case study of the nanotechnology study. Ecotoxicol Environ Saf 72(5):1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Garabagiu S (2013) Gold nanorods-hemoglobin bio-conjugate: spectroscopy studies. J Mol Struct 1031:216–220

    Article  CAS  Google Scholar 

  • Gerashchenko BI, Gun’ko VM, Gerashchenko II et al (2002) Probing the silica surfaces by red blood cells. Cytometry 49(2):56–61

    Article  PubMed  Google Scholar 

  • Grebowski J, Krokosz A, Puchala M (2013) Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene. Biochim Biophys Acta 1828(2):241–248

    Article  PubMed  CAS  Google Scholar 

  • Higashisaka K, Yoshioka Y, Yamashita K et al (2012) Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles. Nanoscale Res Lett 7(555):1–9

    Google Scholar 

  • Hu C-MJ, Zhang L, Aryal S et al (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 108(27):10980–10985

    Article  PubMed  CAS  Google Scholar 

  • Huh AJ, Kwon YJ (2011) Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotic resistant era. J Control Release 156(2):128–145

    Article  PubMed  CAS  Google Scholar 

  • Khullar P, Singh V, Mahal A et al (2012) Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis and cytotoxicity toward cancer cell lines. J Phys Chem C 116(15):8834–8843

    Article  CAS  Google Scholar 

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed 50(6):1260–1278

    Article  CAS  Google Scholar 

  • Kunzmann A, Andersson B, Thurnherr T et al (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta 1810(3):361–373

    Article  PubMed  CAS  Google Scholar 

  • Labarre D, Vauthier C, Chauvierre C et al (2005) Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticle decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Haynes C (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132(13):4834–4842

    Article  PubMed  CAS  Google Scholar 

  • Liu YF, Yu JS (2010) In situ synthesis of high luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility. J Colloid Interface Sci 351(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Lu SL, Duffin R, Poland C et al (2009) Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117(2):241–247

    PubMed  CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105(38):14265–14270

    Article  PubMed  CAS  Google Scholar 

  • Meng J, Cheng X, Liu J et al (2012) Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation. PLoS One 7(7):e38995

    Article  PubMed  CAS  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  PubMed  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  CAS  Google Scholar 

  • Omenn GS, Aebersold R, Paik YK (2007) HUPO plasma proteome project. Mol Cell Proteomics 6:2252–2253

    Article  CAS  Google Scholar 

  • Paula AJ, Martinez DST, Araujo Júnior RT et al (2012) Suppression of the hemolytic effect of mesoporous silica nanoparticle after protein corona interaction: independence of the surface microchemical environment. J Braz Chem Soc 23(10):1807–1814

    Article  CAS  Google Scholar 

  • Rogers EJ, Hsieh SF, Organti N et al (2008) A high throughput in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: human blood serum. Toxicol In Vitro 22(6):1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Rothen-Rutishauser BM, Schürch S, Haenni B et al (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 40(14):4353–4359

    Article  PubMed  CAS  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Hedberg Y, Lundin M et al (2012) Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by plasma corona. Acta Biomater 8(9):3478–3490

    Article  PubMed  CAS  Google Scholar 

  • Slowing II, Wu CW, Vivero-Escoto JL et al (2009) Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Song HS, Park TH (2011) Integration of biomolecules and nanomaterials: towards highly selective and sensitive sensors. Biotechnol J 6(11):1310–1316

    Article  PubMed  Google Scholar 

  • Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167

    Article  PubMed  CAS  Google Scholar 

  • Valizadeh A, Mikaeili H, Samiei M et al (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7(1):480. doi:10.1186/1556-276X-7-480

    Article  PubMed  CAS  Google Scholar 

  • Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799

    Article  PubMed  CAS  Google Scholar 

  • Yu T, Malugin A, Ghandehari H (2011) The impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Dunphy DR, Jiang X et al (2012a) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs. pyrolytic. J Am Chem Soc 134(38):15790–15804

    Article  PubMed  CAS  Google Scholar 

  • Zhang QX, Xu X, Bertrand N et al (2012b) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384

    Article  PubMed  CAS  Google Scholar 

  • Zhao ML, Li DJ, Yuan L et al (2011a) Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes. Carbon 49(9):3125–3133

    Article  CAS  Google Scholar 

  • Zhao F, Zhao Y, Liu Y et al (2011b) Cellular uptake, intracellular trafficking and cytotoxicity of nanomaterials. Small 7(10):1322–1337

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Sun X, Zhang G et al (2011c) Interaction of mesoporous silica nanoparticles with human red blood cells membranes: size and surface effects. ACS Nano 2(5):1366–1375

    Article  Google Scholar 

  • Zook JM, MacCuspie RI, Locascio LE et al (2011) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5(4):517–530

    Article  PubMed  CAS  Google Scholar 

  • Zook JM, Halter MD, Cleveland D et al (2012) Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity. J Nanopart Res 14(1165):1–9

    Google Scholar 

Download references

Acknowledgments

The authors thank CNPq, FAPESP, INCT-Imonat, and the Brazilian Nanotoxicology Network—CIGENANOTOX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Stéfani T. Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Luna, L.A.V., Martinez, D.S.T., Alves, O.L. (2014). Assessing the Erythrocyte Toxicity of Nanomaterials: From Current Methods to Biomolecular Surface Chemistry Interactions. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_16

Download citation

Publish with us

Policies and ethics