Nanotoxicology pp 299-324 | Cite as

Polymeric Nanoparticles: In Vivo Toxicological Evaluation, Cardiotoxicity, and Hepatotoxicity

  • Solange C. Garcia
  • Silvia S. Guterres
  • Guilherme B. Bubols
  • Rachel P. Bulcão
  • Mariele F. Charão
  • Adriana R. Pohlmann
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


The applications of nanoparticles (NPs) in therapeutics have motivated the increasing development of studies in the field of nanotoxicology. This chapter focused to provide a critical analysis of the available literature about the toxicity and safety of biodegradable polymeric nanoparticles, particularly in terms of cardiotoxicity and hepatotoxicity. The most commonly applied methods in NP toxicity studies are also discussed, and their limitations concerning the specific properties of NPs, once a key point to obtain accurate and reliable in vitro and in vivo toxicological evaluations, are to guarantee an appropriate physicochemical characterization of the nanoparticles. Large surface area, high absorption capacity, the aggregation state, and surface coating of nanoparticles are also intrinsic properties of NPs that can interfere with the results. For further studies, a challenge to be overcome is the standardization of experiments, especially regarding the consensus in the way to express the administered dose of nanoparticles. Finally, a diagram for a nanotoxicological evaluation using in vitro and in vivo models is proposed.


HepG2 Cell Toxicological Effect Polymeric Nanoparticles PAMAM Dendrimers Usnic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Belyanskaya L, Manser P, Spohn P et al (2007) The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 45:2643–2648CrossRefGoogle Scholar
  2. Bernardi A, Frozza RL, Jager E et al (2008) Selective cytotoxicity of indomethacin and indomethacin ethyl ester-loaded nanocapsules against glioma cell lines: an in vitro study. Eur J Pharmacol 586:24–34PubMedCrossRefGoogle Scholar
  3. Bernardi A, Braganhol E, Jager E et al (2009) Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 281:53–63PubMedCrossRefGoogle Scholar
  4. Blasi E, Heyen J, Patyna S et al (2012) Sunitinib, a receptor tyrosine kinase inhibitor, increases blood pressure in rats without associated changes in cardiac structure and function. Cardiovasc Ther 30:287–294PubMedCrossRefGoogle Scholar
  5. Brannon-Peppas L (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 16(1):1–9CrossRefGoogle Scholar
  6. Bulcão RP, Freitas FA, Venturini CG et al (2012) Acute and subchronic toxicity evaluation of poly(epsilon-caprolactone) lipid-core nanocapsules in rats. Toxicol Sci 132:162–176PubMedCrossRefGoogle Scholar
  7. Cai S, Thati S, Bagby TR et al (2010) Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J Control Release 146:212–218PubMedCrossRefGoogle Scholar
  8. Casey A, Herzog E, Davoren M et al (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425–1432CrossRefGoogle Scholar
  9. Clift MJ, Gehr P, Rothen-Rutishauser B (2011) Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol 85:723–731PubMedCrossRefGoogle Scholar
  10. Das S, Roy P, Auddy RG et al (2011) Silymarin nanoparticle prevents paracetamol-induced hepatotoxicity. Int J Nanomedicine 6:1291–1301PubMedCrossRefGoogle Scholar
  11. Devalapally H, Duan Z, Seiden MV et al (2008) Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res 14:3193–3203PubMedCrossRefGoogle Scholar
  12. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605PubMedCrossRefGoogle Scholar
  13. Fang F, Gong CY, Dong PW et al (2009) Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. Biomed Mater 4:025002PubMedCrossRefGoogle Scholar
  14. Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571PubMedCrossRefGoogle Scholar
  15. Frozza RL, Bernardi A, Paese K et al (2010) Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 6:694–703PubMedCrossRefGoogle Scholar
  16. Gong C, Shi S, Dong P et al (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:89–99PubMedCrossRefGoogle Scholar
  17. Greish K, Thiagarajan G, Herd H et al (2012) Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology 6:713–723PubMedCrossRefGoogle Scholar
  18. Guo L, Von Dem Bussche A, Buechner M et al (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4:721–727PubMedCrossRefGoogle Scholar
  19. Guyon JR, Steffen LS, Howell MH et al (2007) Modeling human muscle disease in zebrafish. Biochim Biophys Acta 1772:205–215PubMedCrossRefGoogle Scholar
  20. Han X, Corson N, Wade-Mercer P et al (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297:1–9PubMedCrossRefGoogle Scholar
  21. Hartung T (2011) From alternative methods to a new toxicology. Eur J Pharm Biopharm 77:338–349PubMedCrossRefGoogle Scholar
  22. Heiden TC, Dengler E, Kao WJ et al (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79PubMedCrossRefGoogle Scholar
  23. Hu YL, Qi W, Han F et al (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351–3359PubMedGoogle Scholar
  24. Huang Y, Gao H, Gou M et al (2010) Acute toxicity and genotoxicity studies on poly-(epsilon-caprolactone)- poly(ethyleneglycol)-poly(epsilon-caprolactone) nanomaterials. Mutat Res 696:101–106PubMedCrossRefGoogle Scholar
  25. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2001) In: S7A: safety pharmacology studies for human pharmaceuticals, GenevaGoogle Scholar
  26. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2005) In: S7B: the nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals, GenevaGoogle Scholar
  27. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2009) In: S9: nonclinical evaluation for anticancer pharmaceuticals, GenevaGoogle Scholar
  28. Jain A, Agarwal A, Majumder S et al (2010) Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 148:359–367PubMedCrossRefGoogle Scholar
  29. Jain AK, Swarnakar NK, Das M et al (2011a) Augmented anticancer efficacy of doxorubicin-loaded polymeric nanoparticles after oral administration in a breast cancer induced animal model. Mol Pharm 8:1140–1151PubMedCrossRefGoogle Scholar
  30. Jain AK, Swarnakar NK, Godugu C et al (2011b) The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32:503–515PubMedCrossRefGoogle Scholar
  31. Johnston H, Brown D, Kermanizadeh A et al (2012) Investigating the relationship between nanomaterial hazard and physicochemical properties: informing the exploitation of nanomaterials within therapeutic and diagnostic applications. J Control Release 164:307–313PubMedCrossRefGoogle Scholar
  32. Kaminskas LM, McLeod VM, Kelly BD et al (2012) A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine 8:103–111PubMedCrossRefGoogle Scholar
  33. Kandarova H, Letasiova S (2011) Alternative methods in toxicology: pre-validated and validated methods. Interdiscip Toxicol 4:107–113PubMedCrossRefGoogle Scholar
  34. Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82:70–80PubMedCrossRefGoogle Scholar
  35. Kim SY, Lee YM, Baik DJ et al (2003) Toxic characteristics of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) nanospheres; in vitro and in vivo studies in the normal mice. Biomaterials 24:55–63PubMedCrossRefGoogle Scholar
  36. Kroll A, Pillukat MH, Hahn D et al (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377PubMedCrossRefGoogle Scholar
  37. Kroll A, Dierker C, Rommel C et al (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9PubMedCrossRefGoogle Scholar
  38. Laurent S, Burtea C, Thirifays C et al (2012) Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 7:e29997PubMedCrossRefGoogle Scholar
  39. Lee AL, Wang Y, Ye WH et al (2008) Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles. Biomaterials 29:1224–1232PubMedCrossRefGoogle Scholar
  40. Lee IH, Yu MK, Kim IH et al (2011) A duplex oligodeoxynucleotide-dendrimer bioconjugate as a novel delivery vehicle for doxorubicin in in vivo cancer therapy. J Control Release 155:88–95PubMedCrossRefGoogle Scholar
  41. Leite EA, Grabe-Guimaraes A, Guimaraes HN et al (2007) Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci 80:1327–1334PubMedCrossRefGoogle Scholar
  42. Li YF, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980PubMedCrossRefGoogle Scholar
  43. Liang HF, Yang TF, Huang CT et al (2005) Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release 105:213–225PubMedCrossRefGoogle Scholar
  44. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367PubMedCrossRefGoogle Scholar
  45. Lim SM, Kim TH, Jiang HH et al (2011) Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials 32:3538–3546PubMedCrossRefGoogle Scholar
  46. Liu ZC, Chang TM (2008) Long-term effects on the histology and function of livers and spleens in rats after 33% toploading of PEG-PLA-nano artificial red blood cells. Artif Cells Blood Substit Immobil Biotechnol 36:513–524PubMedCrossRefGoogle Scholar
  47. Liu M, Fréchet JMJ (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2(10):393–401PubMedCrossRefGoogle Scholar
  48. Liu Q, Li R, Zhu Z et al (2012) Enhanced antitumor efficacy, biodistribution and penetration of docetaxel-loaded biodegradable nanoparticles. Int J Pharm 430:350–358PubMedCrossRefGoogle Scholar
  49. Lynch I, Dawson K (2008) Protein–nanoparticle interactions. Nanotoday 3:40–47CrossRefGoogle Scholar
  50. MacDonald JS, Robertson RT (2009) Toxicity testing in the 21st century: a view from the pharmaceutical industry. Toxicol Sci 110:40–46PubMedCrossRefGoogle Scholar
  51. Mann EE, Thompson LC, Shannahan JH et al (2012) Changes in cardiopulmonary function induced by nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:691–702PubMedCrossRefGoogle Scholar
  52. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142PubMedCrossRefGoogle Scholar
  53. Mukherjee SP, Davoren M, Byrne HJ (2010) In vitro mammalian cytotoxicological study of PAMAM dendrimers—towards quantitative structure activity relationships. Toxicol In Vitro 24:169–177PubMedCrossRefGoogle Scholar
  54. Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RCR, Guterres SS (2013) Poly(ε-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv 10(5):623–638. doi: 10.1517/17425247.2013.769956 PubMedCrossRefGoogle Scholar
  55. Pramanik D, Campbell NR, Das S et al (2012) A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 3:640–650PubMedGoogle Scholar
  56. Qiu L, Chen Y, Gao M et al (2013) Phagocytic uptake and ROS-mediated cytotoxicity in human hepatic cell line of amphiphilic polyphosphazene nanoparticles. J Biomed Mater Res A 101:285–297PubMedGoogle Scholar
  57. Qureshi ZP, Seoane-Vazquez E, Rodriguez-Monguio R et al (2011) Market withdrawal of new molecular entities approved in the United States from 1980 to 2009. Pharmacoepidemiol Drug Saf 20:772–777PubMedCrossRefGoogle Scholar
  58. Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65PubMedCrossRefGoogle Scholar
  59. Russel W, Burch R (eds) (1959) The principles of humane experimental technique. Methuen & Co., LondonGoogle Scholar
  60. Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64:571–588PubMedCrossRefGoogle Scholar
  61. Santos NPS, Nascimento SC, Wanderley MS et al (2006) Nanoencapsulation of usnic acid: an attempt to improve antitumour activity and reduce hepatotoxicity. Eur J Pharm Biopharm 64:154–160CrossRefGoogle Scholar
  62. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180PubMedCrossRefGoogle Scholar
  63. Schnackenberg LK, Sun J, Beger RD (2012) Metabolomics techniques in nanotoxicology studies. Methods Mol Biol 926:141–156PubMedCrossRefGoogle Scholar
  64. Semete B, Booysen LI, Kalombo L et al (2010) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249:158–165PubMedCrossRefGoogle Scholar
  65. Shell SA, Wappel R, Turner JR et al (2011) Early safety testing for oncology therapies. Drug Discov Dev 14:24–26Google Scholar
  66. Wang K, Fu SZ, Gu YC et al (2009) Synthesis and characterization of biodegradable pH-sensitive hydrogels based on poly(3-caprolactone), methacrylic acid, and poly(ethylene glycol). Polym Degrad Stab 94:730–734CrossRefGoogle Scholar
  67. Wesche DL, Schuster BG, Wang WX et al (2000) Mechanism of cardiotoxicity of halofantrine. Clin Pharmacol Ther 67:521–529PubMedCrossRefGoogle Scholar
  68. Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268PubMedCrossRefGoogle Scholar
  69. Xiao K, Luo J, Li Y et al (2011) PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J Control Release 155:272–281PubMedCrossRefGoogle Scholar
  70. Yang B, Papoian T (2012) Tyrosine kinase inhibitor (TKI)-induced cardiotoxicity: approaches to narrow the gaps between preclinical safety evaluation and clinical outcome. J Appl Toxicol 32:945–951PubMedCrossRefGoogle Scholar
  71. Zhang Y, Hu Z, Ye M et al (2007) Effect of poly(ethylene glycol)-block-polylactide nanoparticles on hepatic cells of mouse: low cytotoxicity, but efflux of the nanoparticles by ATP-binding cassette transporters. Eur J Pharm Biopharm 66:268–280PubMedCrossRefGoogle Scholar
  72. Zheng L, Gou M, Zhou S et al (2011) Antitumor activity of monomethoxy poly(ethylene glycol)-poly (epsilon-caprolactone) micelle-encapsulated doxorubicin against mouse melanoma. Oncol Rep 25:1557–1564PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Solange C. Garcia
    • 1
  • Silvia S. Guterres
    • 2
  • Guilherme B. Bubols
    • 3
  • Rachel P. Bulcão
    • 3
  • Mariele F. Charão
    • 3
  • Adriana R. Pohlmann
    • 4
  1. 1.Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Departamento de Química Orgânica, Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations