Advertisement

Dynamical Transitions in Chemistry and Biology

  • Tian Ma
  • Shouhong Wang
Chapter

Abstract

Chemical reaction systems and biological models were among the first dissipative systems described by the Belgian school; see, e.g., (Prigogine and Lefever 1968; Glansdorff and Prigogine 1971). Among many other features, dissipative systems in nature demonstrate self-organized and self-assembled structures; see, for example, (Nicolis and Prigogine 1977; Kapral and Showalter 1995; Pismen 2006; Desai and Kapral 2009; Cross and Hohenberg 1993; Swinney et al. 1990; Murray 2002).

Keywords

Pattern Formation Dirichlet Boundary Condition Dynamic Transition Neumann Boundary Condition Global Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bao, W. (2002). The random projection method for a model problem of combustion with stiff chemical reactions. Appl. Math. Comput. 130(2-3), 561–571.MathSciNetCrossRefMATHGoogle Scholar
  2. Belousov, B. P. (1959). An oscillating reaction and its mechanism. Sborn. referat. radiat. med., 145.Google Scholar
  3. Brenner, M. P., L. S. Levitov, and E. O. Budrene (1998). Physical mechanisms for chemotactic pattern formation by bacteria. Biophysical Journal 74, 1677–1693.CrossRefGoogle Scholar
  4. Budrene, E. O. and H. C. Berg (1991). Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633.CrossRefGoogle Scholar
  5. Budrene, E. O. and H. C. Berg (1995). Dynamics of formation of symmetric patterns of chemotactic bacteria. Nature 376, 49–53.CrossRefGoogle Scholar
  6. Cross, M. and P. Hohenberg (1993). Pattern formation outside of equilibrium. Reviews of Modern Physics 65(3), 851–1112.CrossRefGoogle Scholar
  7. Desai, R. C. and R. Kapral (2009). Self-Organized and Self-Assembled Structures. Cambridge University Press.Google Scholar
  8. Field, R. J., E. Körös, and R. M. Noyes (1972). Oscillations in chemical systems, Part 2. thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system. J. Am Chem. Soc. 94, 8649–8664.Google Scholar
  9. Field, R. J. and R. M. Noyes (1974). Oscillations in chemical systems, IV. limit cycle behavior in a model of a real chemical reaction. J. Chem. Physics. 60, 1877–1884.Google Scholar
  10. Glansdorff, P. and I. Prigogine (1971). Structure, stability, and fluctuations. Wiley-Interscience, New York.Google Scholar
  11. Guo, B. and Y. Han (2009). Attractor and spatial chaos for the Brusselator in R N. Nonlinear Anal. 70(11), 3917–3931.MathSciNetCrossRefMATHGoogle Scholar
  12. Guo, Y. and H. J. Hwang (2010). Pattern formation (I): the Keller-Segel model. J. Differential Equations 249(7), 1519–1530.MathSciNetCrossRefMATHGoogle Scholar
  13. Hastings, S. P. and J. D. Murray (1975). The existence of oscillatory solutions in the Field-Noyes model for the Belousov-Zhabotinskii reaction. SIAM J. Appl. Math. 28, 678–688.MathSciNetCrossRefGoogle Scholar
  14. Kaper, H. G. and T. J. Kaper (2002). Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys. D 165(1-2), 66–93.MathSciNetCrossRefMATHGoogle Scholar
  15. Kapral, R. and K. Showalter (1995). Chemical Waves and Patterns. Kluwer, Dordrecht.CrossRefGoogle Scholar
  16. Keller, E. F. and L. A. Segel (1970). Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.CrossRefMATHGoogle Scholar
  17. Lapidus, I. and R. Schiller (1976). Model for the chemotactic response of a bacterial population. Biophys J. 16(7), 779–789.Google Scholar
  18. Liu, H., T. Sengul, and S. Wang (2012). Dynamic transitions for quasilinear systems and cahn-hilliard equation with onsager mobility. Journal of Mathematical Physics 53, 023518, doi: 10.1063/1.3687414, 1–31.Google Scholar
  19. Lotka, A. J. (1925). Elements of physical biology. Baltimore: Williams & Wilkins Co.MATHGoogle Scholar
  20. Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.Google Scholar
  21. Ma, T. and S. Wang (2007b). Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing.Google Scholar
  22. Ma, T. and S. Wang (2010b). Dynamic transition theory for thermohaline circulation. Phys. D 239(3-4), 167–189.MathSciNetCrossRefMATHGoogle Scholar
  23. Ma, T. and S. Wang (2011a). Dynamic transition and pattern formation for chemotactic systems.Google Scholar
  24. Ma, T. and S. Wang (2011c). Phase transitions for Belousov-Zhabotinsky reactions. Math. Methods Appl. Sci. 34(11), 1381–1397.MathSciNetCrossRefMATHGoogle Scholar
  25. Ma, T. and S. Wang (2011d). Phase transitions for the Brusselator model. J. Math. Phys. 52(3), 033501, 23.Google Scholar
  26. Murray, J. (2002). Mathematical Biology, II. 3rd Ed. Springer-Verlag.Google Scholar
  27. Nadin, G., B. Perthame, and L. Ryzhik (2008). Traveling waves for the Keller-Segel system with Fisher birth terms. Interfaces Free Bound. 10(4), 517–538.MathSciNetCrossRefMATHGoogle Scholar
  28. Nicolis, G. and I. Prigogine (1977). Self-organization in nonequilibrium systems. Wiley-Interscience, New York.Google Scholar
  29. Perthame, B. and A.-L. Dalibard (2009). Existence of solutions of the hyperbolic Keller-Segel model. Trans. Amer. Math. Soc. 361(5), 2319–2335.MathSciNetCrossRefMATHGoogle Scholar
  30. Perthame, B., C. Schmeiser, M. Tang, and N. Vauchelet (2011). Travelling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existence and branching instabilities. Nonlinearity 24(4), 1253–1270.MathSciNetCrossRefMATHGoogle Scholar
  31. Pismen, L. M. (2006). Patterns and Interfaces in Dissipative Dynamics. Springer, Berlin.MATHGoogle Scholar
  32. Prigogine, I. and R. Lefever (1968). Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695.CrossRefGoogle Scholar
  33. Reichl, L. E. (1998). A modern course in statistical physics (Second ed.). A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.MATHGoogle Scholar
  34. Shi, J. (2009). Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models. Front. Math. China 4(3), 407–424.MathSciNetCrossRefMATHGoogle Scholar
  35. Smoller, J. (1983). Shock waves and reaction-diffusion equations, Volume 258 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. New York: Springer-Verlag.Google Scholar
  36. Swinney, H. L., N. Kreisberg, W. D. McCormick, Z. Noszticzius, and G. Skinner (1990). Spatiotemporal patterns in reaction-diffusion systems. In Chaos (Woods Hole, MA, 1989), pp. 197–204. New York: Amer. Inst. Phys.Google Scholar
  37. Temam, R. (1997). Infinite-dimensional dynamical systems in mechanics and physics (Second ed.), Volume 68 of Applied Mathematical Sciences. New York: Springer-Verlag.Google Scholar
  38. Tzou, J. C., B. J. Matkowsky, and V. A. Volpert (2009). Interaction of Turing and Hopf modes in the superdiffusive Brusselator model. Appl. Math. Lett. 22(9), 1432–1437.MathSciNetCrossRefMATHGoogle Scholar
  39. Volterra, V. (1926). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei. Ser. VI 2, 31–113.Google Scholar
  40. Zhabotinski, A. (1964). Periodic process of the oxidation of malonic acid in solution (study of the kinetics of belousov’s reaction). Biofizika 9, 306–311.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Tian Ma
    • 1
  • Shouhong Wang
    • 2
  1. 1.Department of MathematicsSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations