Skip to main content

Dynamic Transition Theory

  • Chapter
  • First Online:

Abstract

This chapter introduces the dynamic transition theory for nonlinear dissipative systems developed recently by the authors. The main focus is the derivation of a general principle, Principle 1, on dynamic transitions for dissipative systems and a study of the types and structure of dynamic transitions. Our work is based on Philosophy 2, which states that we should search for a complete set of transition states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We follow here the notation used in Ma and Wang (2005b). In particular, a linear operator L: X 1 → X is called a completely continuous field if L = −A + B: X 1 → X, A: X 1 → X is a linear homeomorphism, and B: X 1 → X is a linear compact operator. Also, we refer the interested reader to classical books such as (Kato 1995) for a basic knowledge of linear operators, and to Henry (1981), Pazy (1983) for semigroups of linear operators and sectorial operators.

References

  • Andronov, A. A., E. A. Leontovich, I. I. Gordon, and A. G. Maĭer (1973). Theory of bifurcations of dynamic systems on a plane. Halsted Press [A division of John Wiley & Sons], New York-Toronto, Ont. Translated from the Russian.

    Google Scholar 

  • Chow, S. N. and J. K. Hale (1982). Methods of bifurcation theory, Volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. New York: Springer-Verlag.

    Google Scholar 

  • Crandall, M. G. and P. H. Rabinowitz (1977). The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal. 67(1), 53–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Field, M. (1996). Lectures on bifurcations, dynamics and symmetry, Volume 356 of Pitman Research Notes in Mathematics Series. Harlow: Longman.

    Google Scholar 

  • Foiaş, C. and R. Temam (1979). Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J. Math. Pures Appl. (9) 58(3), 339–368.

    Google Scholar 

  • Golubitsky, M. and D. G. Schaeffer (1985). Singularities and groups in bifurcation theory. Vol. I, Volume 51 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Google Scholar 

  • Guckenheimer, J. and P. Holmes (1990). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Volume 42 of Applied Mathematical Sciences. New York: Springer-Verlag. Revised and corrected reprint of the 1983 original.

    Google Scholar 

  • Hale., J. (1988). Asymptotic behaviour of dissipative systems. AMS Providence RI.

    Google Scholar 

  • Henry, D. (1981). Geometric theory of semilinear parabolic equations, Volume 840 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.

    Google Scholar 

  • Hopf, E. (1942). Abzweigung einer periodischen lbsung von einer stationaren lösung eines differentialsystems. Ber. Math.-Phys. K. Sachs. Akad. Wiss. Leipzig 94, 1–22.

    Google Scholar 

  • Kato, T. (1995). Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag. Reprint of the 1980 edition.

    Google Scholar 

  • Krasnosel’skii, M. A. (1956). Topologicheskie metody v teorii nelineinykh integralnykh uravnenii. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow.

    Google Scholar 

  • Ma, T. and S. Wang (2004b). Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2(2), 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2005a). Bifurcation and stability of superconductivity. J. Math. Phys. 46(9), 095112, 31.

    Google Scholar 

  • Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.

    Google Scholar 

  • Ma, T. and S. Wang (2005c). Dynamic bifurcation of nonlinear evolution equations. Chinese Ann. Math. Ser. B 26(2), 185–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Ma, T. and S. Wang (2007b). Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing.

    Google Scholar 

  • Ma, T. and S. Wang (2008d). Exchange of stabilities and dynamic transitions. Georgian Mathematics Journal 15:3, 581–590.

    Google Scholar 

  • Marsden, J. E. and M. McCracken (1976). The Hopf bifurcation and its applications. New York: Springer-Verlag. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale, Applied Mathematical Sciences, Vol. 19.

    Google Scholar 

  • Nirenberg, L. (1981). Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.) 4(3), 267–302.

    Google Scholar 

  • Nirenberg, L. (2001). Topics in nonlinear functional analysis, Volume 6 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences. Chapter 6 by E. Zehnder, Notes by R. A. Artino, Revised reprint of the 1974 original.

  • Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations, Volume 44 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Google Scholar 

  • Perko, L. (1991). Differential equations and dynamical systems, Volume 7 of Texts in Applied Mathematics. New York: Springer-Verlag.

    Google Scholar 

  • Rabinowitz, P. H. (1971). Some global results for nonlinear eigenvalue problems. J. Functional Analysis 7, 487–513.

    Article  MathSciNet  MATH  Google Scholar 

  • Sattinger, D. H. (1978). Group representation theory, bifurcation theory and pattern formation. J. Funct. Anal. 28(1), 58–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Sattinger, D. H. (1979). Group-theoretic methods in bifurcation theory, Volume 762 of Lecture Notes in Mathematics. Berlin: Springer. With an appendix entitled “How to find the symmetry group of a differential equation” by Peter Olver.

    Google Scholar 

  • Sattinger, D. H. (1980). Bifurcation and symmetry breaking in applied mathematics. Bull. Amer. Math. Soc. (N.S.) 3(2), 779–819.

    Google Scholar 

  • Sattinger, D. H. (1983). Branching in the presence of symmetry, Volume 40 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  • Temam, R. (1997). Infinite-dimensional dynamical systems in mechanics and physics (Second ed.), Volume 68 of Applied Mathematical Sciences. New York: Springer-Verlag.

    Google Scholar 

  • Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos, Volume 2 of Texts in Applied Mathematics. New York: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ma, T., Wang, S. (2014). Dynamic Transition Theory. In: Phase Transition Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8963-4_2

Download citation

Publish with us

Policies and ethics