Social Metacognition, Micro-Creativity, and Justifications: Statistical Discourse Analysis of a Mathematics Classroom Conversation

  • Ming Ming Chiu
Part of the Computer-Supported Collaborative Learning Series book series (CULS, volume 15)


This analysis shows how statistical discourse analysis can identify the locations and consequences of pivotal moments and how characteristics of recent turns of talk such as questions and evaluations (social metacognition) are linked to characteristics of subsequent turns of talk, such as correct ideas, new ideas, or justifications. Along with the other studies in this unit, this analysis shows how multivocality can suggest cycles of analyses and help develop further statistical methods.


  1. Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93, 491–507.CrossRefGoogle Scholar
  2. Buchs, C., Butera, F., Mugny, G., & Darnon, C. (2004). Conflict elaboration and cognitive outcomes. Theory into Practice, 43, 23–30.CrossRefGoogle Scholar
  3. Chiu, M. M. (2000a). Group problem solving processes: Social interactions and individual actions. Journal for the Theory of Social Behavior, 30(1), 27–50.CrossRefGoogle Scholar
  4. Chiu, M. M. (2000b). Status effects on solutions, leadership, and evaluations during group problem solving. Sociology of Education, 73(3), 175–195.CrossRefGoogle Scholar
  5. Chiu, M. M. (2001). Analyzing group work processes. In F. Columbus (Ed.), Advances in psychology research (Vol. 4, pp. 193–222). Huntington, NY: Nova Science.Google Scholar
  6. Chiu, M. M. (2008a). Effects of argumentation on group micro-creativity. Contemporary Educational Psychology, 33, 382–402.CrossRefGoogle Scholar
  7. Chiu, M. M. (2008b). Flowing toward correct contributions during group problem solving: A statistical discourse analysis. Journal of the Learning Sciences, 17(3), 415–463.CrossRefGoogle Scholar
  8. Chiu, M. M., & Khoo, L. (2003). Rudeness and status effects during group problem solving. Journal of Educational Psychology, 95, 506–523.CrossRefGoogle Scholar
  9. Chiu, M. M., & Khoo, L. (2005). A new method for analyzing sequential processes: Dynamic multi-level analysis. Small Group Research, 36, 600–631.CrossRefGoogle Scholar
  10. Chiu, M. M., & Kuo, S. W. (2009). From metacognition to social metacognition: Similarities, differences, and learning. Journal of Education Research, 3(4), 1–19.Google Scholar
  11. Cobb, P. (1995). Mathematical learning and small-group interaction: Four case studies. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 25–130). Hillsdale, NJ: Lawrence Erlbaum Assoc.Google Scholar
  12. Cohen, J., West, S. G., Aiken, L., & Cohen, P. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  13. Coleman, E. (1998). Using explanatory knowledge during collaborative problem solving in science. The Journal of Learning Sciences, 7, 387–427.Google Scholar
  14. Goldstein, H. (1995). Multilevel statistical models. Sydney: Edward Arnold.Google Scholar
  15. Green, S. B. (1991). How many subjects does it take to do a regression analysis? Multivariate Behavioral Research, 26, 499–510.Google Scholar
  16. Huedo-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis. Psychological Methods, 11, 193–206.CrossRefGoogle Scholar
  17. Kennedy, P. (2004). A guide to econometrics. Cambridge: Blackwell.Google Scholar
  18. King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9, 137–163.CrossRefGoogle Scholar
  19. Krippendorff, K. (2004). Content analysis. Thousand Oaks, CA: Sage.Google Scholar
  20. Lu, J., Chiu, M. M., & Law, N. (2011). Collaborative argumentation and justifications. Computers in Human Behavior, 27, 946–955.CrossRefGoogle Scholar
  21. Milliken, F. J., Bartel, C. A., & Kurtzberg, T. R. (2003). Diversity and creativity in work groups. In P. B. Paulus & B. A. Nijstad’s (Eds.), Group creativity (pp. 32–62). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  22. Nemeth, C. J., Personnaz, B., Personnaz, M., & Goncalo, J. A. (2004). The liberating role of conflict in group creativity. European Journal of Social Psychology, 34, 365–374.CrossRefGoogle Scholar
  23. Nijstad, B. A., Diehl, M., & Stroebe, W. (2003). Cognitive stimulation and interference in idea generating groups. In P. B. Paulus & B. A. Nijstad (Eds.), Group creativity: Innovation through collaboration (pp. 137–159). New York, NY: Oxford University Press.Google Scholar
  24. Orlitzky, M., & Hirokawa, R. Y. (2001). To err is human, to correct for it divine. Small Group Research, 32, 313–341.CrossRefGoogle Scholar
  25. Paulus, P. B., & Brown, V. (2003). Ideational creativity in groups. In P. B. Paulus & B. A. Nijstad (Eds.), Group creativity (pp. 110–136). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  26. Piaget, J. (1985). The equilibrium of cognitive structures. Chicago: University of Chicago Press.Google Scholar
  27. Sacks, H. (1995). Lectures on conversation. Oxford: Blackwell.CrossRefGoogle Scholar
  28. Sobel, M. E. (1982). Asymptotic intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp. 290–312). San Francisco, CA: Jossey-Bass.Google Scholar
  29. Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 3–15). New York, NY: Cambridge University Press.Google Scholar
  30. Toulmin, S. E. (2003). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  31. Trausan-Matu, S., Stahl, G., & Sarmiento, J. (2007). Supporting polyphonic collaborative learning. E-service Journal, 6(1), 58–74.CrossRefGoogle Scholar
  32. Tsui, A. (1992). A functional description of questions. In M. Coulthard (Ed.), Advances in spoken discourse analysis (pp. 89–110). London: Routledge.Google Scholar
  33. Wise, A., & Chiu, M. M. (2011). Analyzing temporal patterns of knowledge construction in a role-based online discussion. International Journal of Computer-Supported Collaborative Learning, 6, 445–470.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University at Buffalo—State University of New YorkBuffaloUSA

Personalised recommendations