Methodological Pathways for Avoiding Pitfalls in Multivocality

Chapter

Abstract

This chapter explores multivocality from a methodological perspective. A conceptual model is presented for thinking about multivocality and how it relates to methodological traditions. We reflect back on what we have learned through experimentation with multivocality through the five data sections of the book and draw principles for best practices that we offer to the broader research community. As a running theme throughout the chapter, and as an invitation to disseminate multivocality to the next generation of researchers in our field, we contrast the experience of expert analysts whose work is presented in the preceding data sections with the experience of students working in groups on their first discourse analysis project in the context of a Computational Models of Discourse Analysis (CMDA) class.

References

  1. Bakhtin, M. (1981). Discourse in the novel. In M. Holquist (Ed.), The dialogic imagination: Four essays by M. M. Bakhtin. Austin: University of Texas Press.Google Scholar
  2. Chen, W. & Looi, C.-K. (this volume). Group Scribbles-supported collaborative learning in a primary grade 5 science class. In D. D. Suthers, K. Lund, C. P. Rose, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 14. New York: SpringerGoogle Scholar
  3. Chiu, M. M. (this volume). Social metacognition, micro-creativity and justifications: Statistical discourse analysis of a mathematics classroom conversation. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 7. New York: SpringerGoogle Scholar
  4. Chiu, M. M. (this volume). Statistical discourse analysis of an online discussion: Cognition and social metacognition. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 23. New York: SpringerGoogle Scholar
  5. Cress, U., & Kimmerle, J. (this volume). Successful knowledge building needs group awareness: Interaction analysis of a 9th grade CSCL biology lesson. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 27. New York: SpringerGoogle Scholar
  6. Dyke, G., Howley, I. K., Kumar, R., & Rosé, C. P. (this volume). Towards academically productive talk supported by conversational agents. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 25. New York: SpringerGoogle Scholar
  7. Fujita, N. (this volume). Critical reflections on multivocal analysis and implications for design-based research. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 24. New York: SpringerGoogle Scholar
  8. Goggins, S. P., & Dyke, G. (this volume). Network analytic techniques for online chat. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 29. New York: SpringerGoogle Scholar
  9. Golato, A. (2003). Studying compliment responses: A comparison of DCTs and recordings of naturally occurring talk. Applied Linguistics 24/1, 90–121, Oxford University PressGoogle Scholar
  10. Howley, I. K., Kumar, R., Mayfield, E., Dyke, G., & Rosé, C. P. (this volume). Gaining insights from sociolinguistic style analysis for redesign of conversational agent based support for collaborative learning. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 26. New York: SpringerGoogle Scholar
  11. Howley, I. K., Mayfield, E., Rosé, C. P., & Strijbos, J.-W. (this volume). A multivocal process analysis of social positioning in study groups. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 11. New York: SpringerGoogle Scholar
  12. Jeong, H. (this volume). Development of group understanding via the construction of physical and technological artifacts. In D. D. Suthers, K. Lund, C. P. Rose, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 18. New York: SpringerGoogle Scholar
  13. Law, N., & Laferriere, T. (this volume). Multivocality in interaction analysis: Implications for practice. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 35. New York: SpringerGoogle Scholar
  14. Law, N., & Wong, O.-W. (this volume). Exploring pivotal moments in students’ knowledge building progress using participation and discourse marker indicators as heuristic guides. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 22. New York: SpringerGoogle Scholar
  15. Lund, K., & Bécu-Robinault, K. (this volume). Conceptual change and sustainable coherency of concepts across modes of interaction. In D. D. Suthers, K. Lund, C. P. Rose, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 17. New York: SpringerGoogle Scholar
  16. Lund, K., Rosé, C. P., Suthers, D. D., & Baker, M. (this volume). Epistemological encounters in multivocal settings. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 34. New York: SpringerGoogle Scholar
  17. Medina, R. (this volume). Cascading inscriptions and practices: Diagramming and experimentation in the group scribbles classroom. In D. D. Suthers, K. Lund, C. P. Rose, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 16. New York: SpringerGoogle Scholar
  18. Potter, J. (2004). Discourse analysis. In M. Hardy & A. Bryman (Eds.), Handbook of data analysis (pp. 607–624). London: SageGoogle Scholar
  19. Schegloff, (1996a). Confirming allusions: Toward an empirical account of action. American Journal of Sociology, 102(1), 161–216Google Scholar
  20. Schegloff, (1996b). Some practices for referring to persons in talk-in-interaction: A partial sketch of a systematics. In B. A. Fox (Ed.), Studies in anaphora. (pp. 437–485). Amsterdam: Benjamins Publishing CompanyGoogle Scholar
  21. Schegloff, E. (1999). Discourse, pragmatics, conversation analysis. Discourse Studies, 1(4), 405–435.Google Scholar
  22. Shirouzu, H. (this volume). Focus-based constructive interaction. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 5. New York: SpringerGoogle Scholar
  23. Speer, S. (2002). “Natural” and “contrived” data: A sustainable distinction. Discourse Studies, 4, 511–525.Google Scholar
  24. Stahl, G. (this volume). Interaction analysis of a biology chat. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 28. New York: SpringerGoogle Scholar
  25. Steinhauser, K., Clipp, E., McNeilly, M., Christakis, N., McIntyre, L., & Tulsky, J. (2000). In search of a good death: Observations of patients, families, and health care providers. Annals of Internal Medicine, 132, 825–832.CrossRefGoogle Scholar
  26. Suthers, D. D. (this volume). Agency and modalities in multimediated interaction. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 19. New York: SpringerGoogle Scholar
  27. Teplovs, C., & Fujita, N. (this volume). Socio-dynamic latent semantic learner models. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 21. New York: SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Carnegie Mellon University, Language Technologies Inst. & HCI Inst., Gates Hillman CenterPittsburghUSA
  2. 2.ICAR Research LabCNRS—University of LyonLyonFrance

Personalised recommendations