Statistical Discourse Analysis of an Online Discussion: Cognition and Social Metacognition

  • Ming Ming Chiu
Chapter
Part of the Computer-Supported Collaborative Learning Series book series (CULS, volume 15)

Abstract

This study revised a statistical method (statistical discourse analysis or SDA) designed for linear sequences of turns of talk to apply to branches of messages in asynchronous online discussions. The revised SDA was used to test for cognitive and social metacognitive relationships among 17 students’ 1,330 asynchronous messages during a 13-week online graduate educational technology course. Multivocality benefits included enhancing a statistical method to expand its scope, exposure to other analytic methods’ simpler user-interfaces, and potential integration of multiple methods into a computer program capable of semiautomatic analyses.

References

  1. Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93, 491–507.CrossRefGoogle Scholar
  2. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. London: Sage.Google Scholar
  3. Chen, G., & Chiu, M. M. (2008). Online discussion processes. Computers & Education, 50(3), 678–692.CrossRefGoogle Scholar
  4. Chen, G., Chiu, M. M., & Wang, Z. (2010). Group micro-creativity in online discussions. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Proceedings of the 9th International Conference of the Learning Sciences (Vol. 1, pp. 357–364). Chicago, IL: International Society of the Learning Sciences.Google Scholar
  5. Chiu, M. M. (1996). Exploring the origins, uses and interactions of student intuitions. Journal for Research in Mathematics Education, 27(4), 478–504.CrossRefGoogle Scholar
  6. Chiu, M. M. (2000a). Group problem solving processes: Social interactions and individual actions. Journal for the Theory of Social Behavior, 30(1), 27–50.CrossRefGoogle Scholar
  7. Chiu, M. M. (2000b). Status effects on solutions, leadership, and evaluations during group problem solving. Sociology of Education, 73(3), 175–195.CrossRefGoogle Scholar
  8. Chiu, M. M. (2001). Analyzing group work processes. In F. Columbus (Ed.), Advances in psychology research (Vol. 4, pp. 193–222). Huntington, NY: Nova Science.Google Scholar
  9. Chiu, M. M. (2008a). Effects of argumentation on group micro-creativity. Contemporary Educational Psychology, 33, 382–402.CrossRefGoogle Scholar
  10. Chiu, M. M. (2008b). Flowing toward correct contributions during group problem solving: A statistical discourse analysis. Journal of the Learning Sciences, 17(3), 415–463.CrossRefGoogle Scholar
  11. Chiu, M. M., & Khoo, L. (2003). Rudeness and status effects during group problem solving. Journal of Educational Psychology, 95, 506–523.CrossRefGoogle Scholar
  12. Chiu, M. M., & Khoo, L. (2005). A new method for analyzing sequential processes. Small Group Research, 36, 1–32.CrossRefGoogle Scholar
  13. Chiu, M. M., & Kuo, S. W. (2009). From metacognition to social metacognition. Journal of Education Research, 3(4), 1–19.Google Scholar
  14. Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293–321.CrossRefGoogle Scholar
  15. Dubrovsky, V. J., Kiesler, S. B., & Sethna, B. N. (1991). The equalization phenomenon. Human-Computer Interaction, 6, 119–146.CrossRefGoogle Scholar
  16. Dyke, G., Lund, K., Girardot, J.-J. (2009). Tatiana: an environment to support the CSCL analysis process. CSCL 2009, Rhodes, Greece.Google Scholar
  17. Fujita, N. (this volume). Online graduate education course using knowledge forum. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 20. New York, NY: Springer.Google Scholar
  18. Glassner, A., Weinstoc, M., & Neuman, Y. (2005). Pupils’ evaluation and generation of evidence and explanation in argumentation. British Journal of Educational Psychology, 75, 105–118.CrossRefGoogle Scholar
  19. Goldstein, H. (1995). Multilevel statistical models. Sydney: Edward Arnold.Google Scholar
  20. Goldstein, H., Healy, M., & Rasbash, J. (1994). Multilevel models with applications to repeated measures data. Statistics in Medicine, 13, 1643–1655.CrossRefGoogle Scholar
  21. Gress, C. L. Z., Fior, M., Hadwin, A. F., & Winne, P. H. (2010). Measurement and assessment in computer-supported collaborative learning. Computers in Human Behavior, 26, 806–814.CrossRefGoogle Scholar
  22. Gunawardena, C. N., Lowe, C. A., & Anderson, T. (1997). Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of Educational Computing Research, 17(4), 397–431.CrossRefGoogle Scholar
  23. Hacker, D. J., & Bol, L. (2004). Metacognitive theory. In D. M. McInerney & S. Van Etten (Eds.), Big theories revisited (Vol. 4, pp. 275–297). Greenwich, CO: Information Age.Google Scholar
  24. Hakkarainen, K. (2003). Emergence of progressive-inquiry culture in computer-supported collaborative learning. Learning Environments Research, 6(2), 199–220.CrossRefGoogle Scholar
  25. Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an applied educational psychology course. Instructional Science, 28, 115–152.CrossRefGoogle Scholar
  26. Harasim, L. M. (1993). Global networks. Cambridge, MA: MIT Press.Google Scholar
  27. Howe, C. (2009). Collaborative group work in middle childhood. Human Development, 52(4), 215–239.CrossRefGoogle Scholar
  28. Huedo-Medina, T. B., Sanchez-Meca, J., Marin-Martinez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis. Psychological Methods, 11, 193–206.CrossRefGoogle Scholar
  29. Jeong, A. (2003). The sequential analysis of group interaction and critical thinking in online threaded discussions. American Journal of Distance Education, 17, 25–43. Jeong, A. (2006). The effects of conversational language on group interaction and group performance in computer-supported collaborative argumentation. Instructional Science, 34(5), 367–397.Google Scholar
  30. Kennedy, P. (2008). Guide to econometrics. Cambridge: Wiley-Blackwell.Google Scholar
  31. King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9, 137–163.CrossRefGoogle Scholar
  32. Law, N., & Wong, O.-W. (this volume). Exploring pivotal moments in students’ knowledge building progress using participation and discourse marker indicators as heuristic guides. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive Multivocality in the Analysis of Group Interactions, Chapter 22. New York, NY: Springer.Google Scholar
  33. Ljung, G., & Box, G. (1979). On a measure of lack of fit in time series models. Biometrika, 66, 265–270.CrossRefGoogle Scholar
  34. Lu, J., Chiu, M., & Law, N. (2011). Collaborative argumentation and justifications: A statistical discourse analysis of online discussions. Computers in Human Behavior, 27, 946–955.CrossRefGoogle Scholar
  35. Luppicini, R. (2007). Review of computer mediated communication research for education. Instructional Science, 35(2), 141–185.CrossRefGoogle Scholar
  36. MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128. Nijstad, B. A., Diehl, M., & Stroebe, W. (2003). Cognitive stimulation and interference in idea generating groups. In P. B. Paulus & B. A. Nijstad (Eds.), Group creativity: Innovation through collaboration (pp. 137–159). New York, NY: Oxford University Press.Google Scholar
  37. Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research. Review of Educational Research, 74, 525–556.CrossRefGoogle Scholar
  38. Piaget, J. (1985). Equilibration of cognitive structures. Chicago: University of Chicago Press.Google Scholar
  39. Tallent-Runnels, M. K., Thomas, J. A., Lan, W. Y., Cooper, S., Ahern, T. C., Shaw, S. M., et al. (2006). Teaching courses online. Review of Educational Research, 76(1), 93–135.CrossRefGoogle Scholar
  40. Teplovs, C., & Fujita, N. (this volume). Socio-dynamic latent semantic learner models. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 21. New York, NY: Springer.Google Scholar
  41. Thomas, M. J. W. (2002). Learning within incoherent structures: The space of online discussion forums. Journal of Computer Assisted Learning, 18, 351–366.CrossRefGoogle Scholar
  42. Vygotsky, L. (1986). Thought and language. (A. Kozulin, Trans.). Cambridge, MA: MIT Press. (original work published 1934).Google Scholar
  43. Wise, A., & Chiu, M. M. (2011). Analyzing temporal patterns of knowledge construction in a role-based online discussion. International Journal of Computer-Supported Collaborative Learning, 6, 445–470. Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ming Ming Chiu
    • 1
  1. 1.University at Buffalo—State University of New YorkBuffaloUSA

Personalised recommendations