Socio-Dynamic Latent Semantic Learner Models

Chapter
Part of the Computer-Supported Collaborative Learning Series book series (CULS, volume 15)

Abstract

In this chapter we present a framework for learner modelling that combines latent semantic analysis and social network analysis of online discourse. The framework is supported by newly developed software, known as the Knowledge, Interaction and Social Student Modelling Explorer (KISSME), that employs highly interactive visualizations of interactions and semantic similarity among learners. Our goal is to develop, use and refine KISSME to generate and test predictive models of learner interactions to optimise learning.

Keywords

CSCL 

References

  1. Bavelas, A. (1950). Communication patterns in task-oriented groups. Journal of the Acoustical Society of America, 22, 271–282.CrossRefGoogle Scholar
  2. Bavelas, A., & Barrett, D. (1951). An experimental approach to organizational communication. Personnel, 27, 366–371.Google Scholar
  3. Coleman, J. S., Katz, E., & Menzel, H. (1957). The diffusion of an innovation among physicians. Sociometry, 20, 253–270.CrossRefGoogle Scholar
  4. Coleman, J. S., Katz, E., & Menzel, H. (1966). Medical innovation: A diffusion study. Indianapolis, IN: Bobbs-Merrill.Google Scholar
  5. Contractor, N. (2009). The emergence of multidimensional networks. Journal of Computer-Mediated Communication, 14, 743–747.CrossRefGoogle Scholar
  6. de Laat, M., Lally, V., Lipponen, L., & Simons, R.-J. (2007). Investigating patterns of interaction in networked learning and computer-supported collaborative learning: A role for Social Network Analysis. International Journal of Computer-Supported Collaborative Learning, 2, 87–103.CrossRefGoogle Scholar
  7. Dessus, P. (2009). An overview of LSA-based systems for supporting learning and teaching. In Proceeding of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling. IOS Press: Amsterdam, Netherlands.Google Scholar
  8. Dessus, P., Mandin, S., & Zampa, V. (2008). What is teaching? Cognitive-based tutoring principles for the design of a learning environment. In S. Tazi & K. Zreik (Eds.), Common innovation in e-learning, machine learning and humanoid (ICHSL.6) (pp. 49–55). Paris, France: Europa/IEEE.Google Scholar
  9. Freeman, L. C., Romney, A. K., & Freeman, S. C. (1987). Cognitive structure and informant accuracy. American Anthropologist, 89, 310–325.CrossRefGoogle Scholar
  10. Fujita, N. (this volume). Online graduate education course using knowledge forum. In D. D. Suthers, K. Lund, C. P. Rosé, C. Teplovs, & N. Law (Eds.), Productive multivocality in the analysis of group interactions, Chapter 20. New York, NY: Springer.Google Scholar
  11. Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analyses of on-line discussion in an applied educational psychology course. Instructional Science, 28, 115–152.CrossRefGoogle Scholar
  12. Haythornthwaite, C. (2001). Exploring multiplexity: Social network structure in a computer-supported distance learning class. The Information Society, 17, 211–226.CrossRefGoogle Scholar
  13. Henri, F. (1992). Computer conferencing and content analysis. In A. R. Kaye (Ed.), Collaborative learning through computer conferencing. London, UK: Springer.Google Scholar
  14. Kintsch, E., Caccmise, D., Franzke, M., Johnson, N., & Dooley, S. (2007). Summary street®: Computer-guided summary writing. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  15. Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9, 109–134.CrossRefGoogle Scholar
  16. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.CrossRefGoogle Scholar
  17. Landauer, T. K., Laham, D., & Derr, M. (2004). From paragraph to graph: Latent semantic analysis for information visualization. Proceedings of the National Academy of Sciences of the United States of America, 101, 5214–5219.CrossRefGoogle Scholar
  18. Leavitt, H. J. (1951). Some effects of communication patterns on group performance. Journal of Abnormal and Social Psychology, 46, 38–50.CrossRefGoogle Scholar
  19. Martínez, A., Dimitriadis, Y., Rubia, B., Gomez, E., & de la Fuente, P. (2003). Combining qualitative evaluation and social network analysis for the study of classroom social interactions. Computers & Education, 41, 353–368.CrossRefGoogle Scholar
  20. Penumatsa, P., Ventura, M., Graesser, A. C., Louwerse, M. M., Hu, X., Cai, Z., et al. (2006). The right threshold value: What is the right threshold of cosine measure when using latent semantic analysis for evaluating student answers? International Journal on Artificial Intelligence Tools, 15, 767–778.CrossRefGoogle Scholar
  21. Reffay, C., & Chanier, T. (2003). How social network analysis can help to measure cohesion in collaborative distance-learning. In Designing for change in networked learning. Proceedings of the international conference on Computer Supported Collaborative Learning 2003 (pp. 343–352). Kluwer Academic Publishers: Bergen, Norway.Google Scholar
  22. Reffay, C., Teplovs, C., & Blondel, F.-M. (2011). Productive re-use of CSCL data and analytic tools to provide a new perspective on group cohesion. In Proceedings of the 10th International Conference on Computer Supported Collaborative Learning, 2011, Hong Kong.Google Scholar
  23. Rehder, B., Schreiner, M. E., Wolfe, M. B., Laham, D., Landauer, T. K., & Kintsch, W. (1998). Using latent semantic analysis to assess knowledge: Some technical considerations. Discourse Processes, 25, 337–354.CrossRefGoogle Scholar
  24. Reimann, P. (2009). Time is precious: Variable- and event-centred approaches to process analysis in CSCL research. International Journal of Computer-Supported Collaborative Learning, 4, 239–257.CrossRefGoogle Scholar
  25. Rogers, E. M. (1979). Network analysis of the diffusion of innovations. In P. W. Holland & S. Leinhardt (Eds.), Perspectives on social network research (pp. 137–164). New York, NY: Academic.CrossRefGoogle Scholar
  26. Scardamalia, M., & Bereiter, C. (2006). Knowledge building: theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge Handbook of the Learning Sciences (pp. 97–118). New York: Cambridge University Press. Suthers, D., Dwyer, N., Medina, R., & Vatrapu, R. (2010). A framework for conceptualizing, representing, and analyzing distributed interaction. International Journal of Computer-Supported Collaborative Learning, 5, 5–42.Google Scholar
  27. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  28. Wasserman, S., & Faust, K. (1997). Social network analysis: Methods and applications. Cambridge, UK: Cambridge University Press.Google Scholar
  29. Wellman, B. (1979). The community question: The intimate networks of East Yorkers. American Journal of Sociology, 84, 1201–1231.CrossRefGoogle Scholar
  30. Wolfe, M. B., Schreiner, M. E., Rehder, B., Laham, D., Foltz, P. W., Kintsch, W., et al. (1998). Learning from text: Matching readers and text by latent semantic analysis. Discourse Processes, 25, 309–336.CrossRefGoogle Scholar
  31. Zampa, V., & Lemaire, B. (2002). Latent semantic analysis for user modeling. Journal of Intelligent Information Systems, 18(1), 15–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Problemshift, Inc.WindsorCanada
  2. 2.University of WindsorWindsorCanada

Personalised recommendations